Featured Research

from universities, journals, and other organizations

Why people can hold visual information in great detail in their working memory

Date:
February 6, 2012
Source:
American Physiological Society (APS)
Summary:
A new study may explain why people can hold visual information in great detail in their working memory.

Researchers have long known that specific parts of the brain activate when people view particular images. For example, a region called the fusiform face area turns on when the eyes glance at faces, and another region called the parahippocampal place area does the same when a person looks at scenes or buildings. However, it's been unknown whether such specialization also exists for visual working memory, a category of memory that allows the brain to temporarily store and manipulate visual information for immediate tasks.

Now, scientists have found evidence that visual working memory follows a more general pattern of brain activity than what researchers have shown with initial visual activity, instead activating a more diffuse area in the front of the brain for all categories of visual stimuli.

The study is entitled "Mapping Brain Activation and Information During Category-Specific Visual Working Memory." It appears in the Articles in Press section of the Journal of Neurophysiology, published by the American Physiological Society.

Methodology

The researchers worked with 18 healthy adults with normal or corrected vision. Using functional MRI (fMRI), a technique that examines brain activity while subjects are actively performing tasks in an MRI scanner, the researchers had each volunteer view and memorize three sequentially presented images that represented one of four categories: faces, bodies, scenes, or flowers. Between each image, there was a one second delay. Then, after a 10 second delay, the researchers flashed an image from the same category and asked the volunteers to indicate through a button press whether this last image matched one of the previous pictures (half of these "test" images matched one of the previous pictures).

The volunteers did 80 of these trials, 20 of each category. To help make sure they weren't verbally memorizing what they were seeing, which might change the fMRI results, a radio news program ran continuously in the background during the task. Afterwards, the researchers analyzed the fMRI data, looking for which brain areas activated during the short delay between pictures (brain areas active in initial visual activity and encoding) and during the long delay (brain areas active during working memory).

Results

The fMRI data showed that the brain areas previously shown to activate during visualization, all located near the rear of the brain, declined in activity during the 10 second delay, although subtle differences between categories could still be extracted from the data. However, different areas near the front of the brain -- specifically, the bilateral ventrolateral prefrontal cortex, dorsolateral prefrontal cortex and medial frontal gyrus -- became active during the long delay. These areas activated without regard to what type of visual stimulus the volunteers saw, suggesting they activate in a more general pattern for visual working memory with no particular specialization based on image category.

Importance of the Findings

Humans have a remarkable ability to store visual information at high detail over short periods of time. During these storage periods, some of the brain activity seems to shift from visual areas in the rear of the brain to areas in the front that have been suggested to form part of the brain's "control center." These areas do not appear to be specific for particular types of visual information. "We conclude that principles of cortical activation differ between encoding and maintenance of visual material," the authors say. Their findings provide support for current models that locate memory not in specific brain modules but in the concerted action of distributed networks in the brain.

The study was conducted by David E. J. Linden of Cardiff University in Cardiff and Nikolaas N. Oosterhof, Paul E. Downing, and Christoph Klein, all of Bangor University in Bangor, United Kingdom.


Story Source:

The above story is based on materials provided by American Physiological Society (APS). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. E. J. Linden, N. N. Oosterhof, C. Klein, P. E. Downing. Mapping brain activation and information during category-specific visual working memory. Journal of Neurophysiology, 2011; 107 (2): 628 DOI: 10.1152/jn.00105.2011

Cite This Page:

American Physiological Society (APS). "Why people can hold visual information in great detail in their working memory." ScienceDaily. ScienceDaily, 6 February 2012. <www.sciencedaily.com/releases/2012/02/120206143817.htm>.
American Physiological Society (APS). (2012, February 6). Why people can hold visual information in great detail in their working memory. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2012/02/120206143817.htm
American Physiological Society (APS). "Why people can hold visual information in great detail in their working memory." ScienceDaily. www.sciencedaily.com/releases/2012/02/120206143817.htm (accessed August 31, 2014).

Share This




More Mind & Brain News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com
Electrical Stimulation Boosts Brain Function, Study Says

Electrical Stimulation Boosts Brain Function, Study Says

Newsy (Aug. 29, 2014) Researchers found an improvement in memory and learning function in subjects who received electric pulses to their brains. Video provided by Newsy
Powered by NewsLook.com
Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins