Featured Research

from universities, journals, and other organizations

Engineers boost computer processor performance by over 20 percent

Date:
February 7, 2012
Source:
North Carolina State University
Summary:
Researchers have developed a new technique that allows graphics processing units (GPUs) and central processing units (CPUs) on a single chip to collaborate – boosting processor performance by an average of more than 20 percent.

Researchers from North Carolina State University have developed a new technique that allows graphics processing units (GPUs) and central processing units (CPUs) on a single chip to collaborate – boosting processor performance by an average of more than 20 percent.

Related Articles


“Chip manufacturers are now creating processors that have a ‘fused architecture,’ meaning that they include CPUs and GPUs on a single chip,” says Dr. Huiyang Zhou, an associate professor of electrical and computer engineering who co-authored a paper on the research. “This approach decreases manufacturing costs and makes computers more energy efficient. However, the CPU cores and GPU cores still work almost exclusively on separate functions. They rarely collaborate to execute any given program, so they aren’t as efficient as they could be. That’s the issue we’re trying to resolve.”

GPUs were initially designed to execute graphics programs, and they are capable of executing many individual functions very quickly. CPUs, or the “brains” of a computer, have less computational power – but are better able to perform more complex tasks.

“Our approach is to allow the GPU cores to execute computational functions, and have CPU cores pre-fetch the data the GPUs will need from off-chip main memory,” Zhou says.

“This is more efficient because it allows CPUs and GPUs to do what they are good at. GPUs are good at performing computations. CPUs are good at making decisions and flexible data retrieval.”

In other words, CPUs and GPUs fetch data from off-chip main memory at approximately the same speed, but GPUs can execute the functions that use that data more quickly. So, if a CPU determines what data a GPU will need in advance, and fetches it from off-chip main memory, that allows the GPU to focus on executing the functions themselves – and the overall process takes less time.

In preliminary testing, Zhou’s team found that its new approach improved fused processor performance by an average of 21.4 percent.

This approach has not been possible in the past, Zhou adds, because CPUs and GPUs were located on separate chips.

The paper, “CPU-Assisted GPGPU on Fused CPU-GPU Architectures,” will be presented Feb. 27 at the 18th International Symposium on High Performance Computer Architecture, in New Orleans. The paper was co-authored by NC State Ph.D. students Yi Yang and Ping Xiang, and by Mike Mantor of Advanced Micro Devices (AMD). The research was funded by the National Science Foundation and AMD.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Engineers boost computer processor performance by over 20 percent." ScienceDaily. ScienceDaily, 7 February 2012. <www.sciencedaily.com/releases/2012/02/120207095531.htm>.
North Carolina State University. (2012, February 7). Engineers boost computer processor performance by over 20 percent. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/02/120207095531.htm
North Carolina State University. "Engineers boost computer processor performance by over 20 percent." ScienceDaily. www.sciencedaily.com/releases/2012/02/120207095531.htm (accessed October 30, 2014).

Share This



More Computers & Math News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
IBM Taps Into Twitter's Data With New Partnership

IBM Taps Into Twitter's Data With New Partnership

Newsy (Oct. 29, 2014) The new partnership will allow IBM to access Twitter’s data and analytics to help IBM clients better understand their consumers. Video provided by Newsy
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins