Featured Research

from universities, journals, and other organizations

Researchers develop method to examine batteries -- from the inside

Date:
February 12, 2012
Source:
New York University
Summary:
Researchers have developed methodology, based on magnetic resonance imaging (MRI), to examine batteries without destroying them. Their technique creates the possibility of improving battery performance and safety by serving as a diagnostic of its internal workings.

There is an ever-increasing need for advanced batteries for portable electronics, such as phones, cameras, and music players, but also to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. But, once a battery fails, there are no corrective measures -- how do you look inside a battery without destroying it?

Now, researchers at Cambridge University, Stony Brook University, and New York University have developed methodology, based on magnetic resonance imaging (MRI), to do just that. Their technique, which is described in the journal Nature Materials, also creates the possibility of improving battery performance and safety by serving as a diagnostic of its internal workings.

MRI has been extremely successful in the medical field for visualizing disorders and assessing the body's response to therapy. However, MRI is not typically used in the presence of a lot of metal, a primary component in many batteries. This is because conducting surfaces effectively block the radio frequency fields that are used in MRI to see beneath surfaces or inside the human body.

The researchers, however, turned this limitation into a virtue. Because radio frequency fields do not penetrate metals, one can actually perform very sensitive measurements on the surfaces of the conductors. In the case of the popular lithium-ion batteries, for example, the team was able to directly visualize the build-up of lithium metal deposits on the electrodes after charging the battery. Such deposits can also detach from the surface, eventually leading to overheating, battery failure, and -- in some cases -- to fire or explosion.

Visualizing small changes on the surface of the batteries' electrodes allows, in principle, for the testing of many different battery designs and materials under normal operating conditions.

The work is the result of a collaboration between Clare Grey, associate director of the Northeastern Center for Chemical Energy Storage and a professor at Cambridge and Stony Brook universities, and Alexej Jerschow, a professor in the Department of Chemistry at New York University who heads a multi-disciplinary MRI research laboratory.

"New electrode and electrolyte materials are constantly being developed, and this non-invasive MRI technology could provide insights into the microscopic processes inside batteries, which hold the key to eventually making batteries lighter, safer, and more versatile," said Jerschow. "Both electrolyte and electrode surfaces can be visualized with this technique, thus providing a comprehensive picture of the batteries' performance-limiting processes."

"MRI is exciting because we are able to identify where the chemical species inside the battery are located without having to take the battery apart, a procedure which to some degree defeats the purpose," added Grey. "The work clearly shows how we can use the method to identify where lithium deposits form on metal electrodes. The resolution is not yet where we want it to be and we would like to extend the method to much larger batteries, but the information that we were able to get from these measurements is unprecedented."

The project's other researchers were: S. Chandrashekar, a postdoctoral fellow at both Stony Brook and New York Universities; Nicole Trease, a postdoctoral fellow at Stony Brook University; and Hee Jung Chang, a Stony Brook University graduate student.

"We still have some way to go to make the images better resolved and make imaging time shorter," Chandrashekar noted, "However, we feel that with this work, we have made the field wide open for interesting applications."

The research team also envisions that the method could lead to the study of irregularities and cracks on conducting surfaces in the materials sciences field. In addition, they add, the methods developed here could be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices, such as fuel cells.

The research was supported by grants from the U.S. Department of Energy and the National Science Foundation.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Chandrashekar, Nicole M. Trease, Hee Jung Chang, Lin-Shu Du, Clare P. Grey, Alexej Jerschow. 7Li MRI of Li batteries reveals location of microstructural lithium. Nature Materials, 2012; DOI: 10.1038/nmat3246

Cite This Page:

New York University. "Researchers develop method to examine batteries -- from the inside." ScienceDaily. ScienceDaily, 12 February 2012. <www.sciencedaily.com/releases/2012/02/120212192557.htm>.
New York University. (2012, February 12). Researchers develop method to examine batteries -- from the inside. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/02/120212192557.htm
New York University. "Researchers develop method to examine batteries -- from the inside." ScienceDaily. www.sciencedaily.com/releases/2012/02/120212192557.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins