Featured Research

from universities, journals, and other organizations

Discovery that migrating cells 'turn right' has implications for engineering tissues, organs

Date:
February 17, 2012
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
What if we could engineer a liver or kidney from a patient's own stem cells? How about helping regenerate tissue damaged by diseases such as osteoporosis and arthritis? A new study bring scientists a little closer to these possibilities by providing a better understanding how tissue is formed and organized in the body.

'Right turning' cells create diagonal pattern When the cells (purple) cross over the alternating horizontal strips, they line up in uniform, diagonal structures, creating an architectural pattern similar to that found in living tissue.
Credit: Image courtesy of University of California, Los Angeles (UCLA), Health Sciences

What if we could engineer a liver or kidney from a patient's own stem cells? How about helping regenerate tissue damaged by diseases such as osteoporosis and arthritis? A new UCLA study bring scientists a little closer to these possibilities by providing a better understanding how tissue is formed and organized in the body.

A UCLA research team discovered that migrating cells prefer to turn right when encountering changes in their environment. The researchers were then able to translate what was happening in the cells to recreate this left-right asymmetry on a tissue level. Such asymmetry is important in creating differences between the right and left sides of structures like the brain and the hand.

The research, a collaboration between the David Geffen School of Medicine at UCLA and the Center for Cell Control at UCLA's Henry Samueli School of Engineering and Applied Science, appears in the Feb. 17 issue of the journal Circulation Research.

"Our findings suggest a mechanism and design principle for the engineering of tissue," said senior author Dr. Linda L. Demer, a professor of medicine, physiology and bioengineering and executive vice chair of the department of medicine at the Geffen School of Medicine. "Tissue and organs are not simply collections of cells but require careful architecture and design to function normally. Our findings help explain how cells can distinguish and develop highly specific left-right asymmetry, which is an important foundation in tissue and organ creation."

Using microtechnology, the team engineered a culture surface in the lab with alternating strips of protein substrates that were cell-adhesive or cell-repellent, analogous to a floor with narrow horizontal stripes of alternating carpet and tile. Cells may encounter such surface changes when they travel through the body.   The researchers observed that as the migrating cells crossed the interface between "carpet" and "tile" sections, they exhibited a significant tendency to turn right by 20 degrees, and, like a marching band, lined up in long, parallel rows, producing diagonal stripes over the entire surface.

"We had been noticing how these vascular cells would spontaneously form structures in cultures and wanted to study the process," said first author Ting-Hsuan Chen, a graduate student researcher in the department of mechanical and aerospace engineering at UCLA Engineering. "We had no idea our substrates would trigger the left-right asymmetry that we observed in the cells. It was completely unexpected.

"We found that cells demonstrated the ability to distinguish right from left and to self-organize in response to mechanical changes in the surfaces that they encounter. This provides insight into how to communicate with cells in their language and how to begin to instruct them to produce tissue-like architecture."

According to the researchers, the cells can sense the substrates beneath them, and this influences the direction of their migration and what shapes they form in the body. Of most interest, the researchers said, was the fact that the cells responded to the horizontal stripes by reorganizing themselves into diagonal stripes.

The team hopes to harness this phenomenon to use substrate interfaces to communicate with cells and instruct them to produce desired tissue structures for replacement. By adjusting the substrates, the researchers say, they have the potential to guide what structures the cells and tissue form.

The next stage of the research will be to control and guide cells to self-organize into two-dimensional and, eventually, three-dimensional patterns chosen by the researchers.

According to the research team, this is one of the first studies to demonstrate that encountering a change in substrate can trigger a cell's preference for turning left or right. It is also one of the first studies showing that cells can integrate left-right asymmetry into a patterned structure of parallel diagonal stripes resembling tissue architecture.

"Applications for this research may help in future engineering of organs from a patient's own stem cells," Demer said. "This would be especially important given the limited supply of donor organs for transplant and problems with immune rejection."

The study was funded by the National Science Foundation and National Institutes of Health.

Additional authors included Jeffrey J. Hsu, Alan Garfinkel and Yin Tintut from the UCLA Department of Medicine; Yi Huang and Chih-Ming Ho from the UCLA Department of Mechanical and Aerospace Engineering; Xin Zhao, Chunyan Guo and Zongwei Li from the Institute of Robotics and Automatic Information System at China's Nankai University; and Margaret Wong from the UCLA Department of Bioengineering.


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. The original article was written by Rachel Champeau. Note: Materials may be edited for content and length.


Journal Reference:

  1. T.-H. Chen, J. J. Hsu, X. Zhao, C. Guo, M. N. Wong, Y. Huang, Z. Li, A. Garfinkel, C.-M. Ho, Y. Tintut, L. L. Demer. Left-Right Symmetry Breaking in Tissue Morphogenesis via Cytoskeletal Mechanics. Circulation Research, 2012; 110 (4): 551 DOI: 10.1161/CIRCRESAHA.111.255927

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "Discovery that migrating cells 'turn right' has implications for engineering tissues, organs." ScienceDaily. ScienceDaily, 17 February 2012. <www.sciencedaily.com/releases/2012/02/120217221151.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2012, February 17). Discovery that migrating cells 'turn right' has implications for engineering tissues, organs. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/02/120217221151.htm
University of California, Los Angeles (UCLA), Health Sciences. "Discovery that migrating cells 'turn right' has implications for engineering tissues, organs." ScienceDaily. www.sciencedaily.com/releases/2012/02/120217221151.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: World's Oldest Man Lives in Japan

Raw: World's Oldest Man Lives in Japan

AP (Aug. 20, 2014) — A 111-year-old Japanese was certified as the world's oldest man by Guinness World Records on Wednesday. Sakari Momoi, a native of Fukushima in northern Japan, was given a certificate at a hospital in Tokyo. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) — Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins