Featured Research

from universities, journals, and other organizations

Chemical clues on formation of planetary systems: Earth 'siblings' can be different

Date:
February 23, 2012
Source:
Instituto de Astrofisica de Canarias
Summary:
Astronomers have discovered that the chemical structure of Earth-like planets can be very different from the bulk composition of Earth. This may have a dramatic effect on the existence and formation of the biospheres and life on Earth-like planets.

In this study the 55Cnc planetary system has been analyzed: the Earth sibling in this system presents a very different chemical structure.
Credit: NASA

An international team of researchers, with the participation of IAC astronomers, has discovered that the chemical structure of Earth-like planets can be very different from the bulk composition of Earth. This may have a dramatic effect on the existence and formation of the biospheres and life on Earth-like planets.

Related Articles


The study of the photospheric stellar abundances of the planet-host stars is the key to understanding how protoplanets form, as well as which protoplanetary clouds evolve planets and which do not. These studies, which have important implications for models of giant planet formation and evolution, also help us to investigate the internal and atmospheric structure and composition of extrasolar planets..

Theoretical studies suggest that C/O and Mg/Si, are the most important elemental ratios in determining the mineralogy of terrestrial planets, and they can give us information about the composition of these planets. The C/O ratio controls the distribution of Si among carbide and oxide species, while Mg/Si gives information on the silicate mineralogy. In 2010 Bond et al. (2010b) carried out the first numerical simulations of planet formation in which the chemical composition of the proto-planetary cloud was taken as an input parameter. Terrestrial planets were found to form in all the simulations with a wide variety of chemical compositions so these planets might be very different from Earth.

Delgado Mena et al. (2010) have carried out the first detailed and uniform study of C, O, Mg and Si abundances for 61 stars with detected planets and 270 stars without detected planets from the homogeneous high-quality unbiased HARPS GTO sample. They found mineralogical ratios quite different from those in the Sun, showing that there is a wide variety of planetary systems which are unlike the Solar System. Many planetary-host stars present a Mg/Si value lower than 1, so their planets will have a high Si content to form species such as MgSiO3. This type of composition can have important implications for planetary processes like plate tectonics, atmospheric composition and volcanism.

'There could be billions of Earth-like planets in the Universe but a great majority of them may have a totally different internal and atmospheric structure. Building planets in chemically non-solar environments (which are very common in the Universe) may lead to the formation of strange worlds, very different from the Earth! The amount of radioactive and some refractory elements (especially Si) may have drastic implications for planetary processes such as plate tectonics and volcanic activity,' concludes Garik Israelian.

The latest numerical simulations have shown that a wide range of extrasolar terrestrial planet bulk compositions are likely to exist. Planets simulated as forming around stars with Mg/Si ratios less than 1 are found to be Mg-depleted (compared to Earth), consisting of silicate species such as pyroxene and various types of feldspars. Planetary carbon abundances also vary in accordance with the host stars' C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs (expected to have accreted their inner planets during their previous red giant stage).

'The observed variations in the key C/O and Mg/Si ratios for known planetary host stars implies that a wide variety of extrasolar terrestrial planet compositions are likely to exist, ranging from relatively "Earth-like" planets to those that are dominated by C, such as graphite and carbide phases (e.g. SiC, TiC),' Delgado Mena stresses.

The results of Delgado Mena et al. (2010) were used in this study as they are the first to determine the abundance of all of the required elements in a completely internally consistent manner, using high quality spectra and an identical approach for all stars and elements, for a large sample of both host and non-host stars.

The chemical and dynamical simulations were combined by assuming that each embryo retains the composition of its formation location and contributes the same composition to the simulated terrestrial planet. The innermost terrestrial planets (located within ?0.5 AU from the host star) contain a significant amount of the refractory elements Al and Ca (?47% of the planetary mass). Planets forming beyond ?0.5 AU from the host star contain steadily less Al and Ca with increasing distance. One planetary system, 55 Cnc, has a C/O ratio above 1 (C/O = 1.12). This system produced carbon-enriched "Earth-like" planets. All of the terrestrial planets considered in this work have compositions dominated by O, Fe, Mg and Si, most of these elements being delivered in the form of silicates or metals (in the case of iron). However, important differences between those planets forming in systems with C/O < 0.8 (HD17051, HD19994) and those with C/O > 0.8 (55Cnc) have been found.

'We are working hard to decrease abundance measurement errors and make the results of theoretical models and numerical simulations more reliable,' comments González Hernández, 'There is much work to be done'.


Story Source:

The above story is based on materials provided by Instituto de Astrofisica de Canarias. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jade C. Carter-Bond, David P. O'Brien, Elisa Delgado Mena, Garik Israelian, Nuno C. Santos, Jonay I. González Hernández. LOW Mg/Si PLANETARY HOST STARS AND THEIR Mg-DEPLETED TERRESTRIAL PLANETS. The Astrophysical Journal, 2012; 747 (1): L2 DOI: 10.1088/2041-8205/747/1/L2

Cite This Page:

Instituto de Astrofisica de Canarias. "Chemical clues on formation of planetary systems: Earth 'siblings' can be different." ScienceDaily. ScienceDaily, 23 February 2012. <www.sciencedaily.com/releases/2012/02/120223132902.htm>.
Instituto de Astrofisica de Canarias. (2012, February 23). Chemical clues on formation of planetary systems: Earth 'siblings' can be different. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2012/02/120223132902.htm
Instituto de Astrofisica de Canarias. "Chemical clues on formation of planetary systems: Earth 'siblings' can be different." ScienceDaily. www.sciencedaily.com/releases/2012/02/120223132902.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) — Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) — NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com
Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Newsy (Jan. 23, 2015) — The first images of the European Space Agency&apos;s Rosetta probe comet orbit could provide clues about its origin and how it got its unique shape. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins