Featured Research

from universities, journals, and other organizations

Heart-powered pacemaker could one day eliminate battery-replacement surgery

Date:
March 2, 2012
Source:
University of Michigan
Summary:
A new power scheme for cardiac pacemakers turns to an unlikely source: vibrations from heartbeats themselves.

A new power scheme for cardiac pacemakers turns to an unlikely source: vibrations from heartbeats themselves.

Engineering researchers at the University of Michigan designed a device that harvests energy from the reverberation of heartbeats through the chest and converts it to electricity to run a pacemaker or an implanted defibrillator. These mini-medical machines send electrical signals to the heart to keep it beating in a healthy rhythm. By taking the place of the batteries that power them today, the new energy harvester could save patients from repeated surgeries. That's the only way today to replace the batteries, which last five to 10 years.

"The idea is to use ambient vibrations that are typically wasted and convert them to electrical energy," said Amin Karami, a research fellow in the U-M Department of Aerospace Engineering. "If you put your hand on top of your heart, you can feel these vibrations all over your torso."

The researchers haven't built a prototype yet, but they've made detailed blueprints and run simulations demonstrating that the concept would work. Here's how: A hundredth-of-an-inch thin slice of a special "piezoelectric" ceramic material would essentially catch heartbeat vibrations and briefly expand in response. Piezoelectric materials' claim to fame is that they can convert mechanical stress (which causes them to expand) into an electric voltage.

Karami and his colleague Daniel Inman, chair of Aerospace Engineering at U-M, have precisely engineered the ceramic layer to a shape that can harvest vibrations across a broad range of frequencies. They also incorporated magnets, whose additional force field can drastically boost the electric signal that results from the vibrations.

The new device could generate 10 microwatts of power, which is about eight times the amount a pacemaker needs to operate, Karami said. It always generates more energy than the pacemaker requires, and it performs at heart rates from 7 to 700 beats per minute. That's well below and above the normal range.

Karami and Inman originally designed the harvester for light unmanned airplanes, where it could generate power from wing vibrations.

The research is funded by the National Institute of Standards and Technology and the Institute for Critical Technology and Applied Science at Virginia Tech.


Story Source:

The above story is based on materials provided by University of Michigan. The original article was written by Nicole Casal Moore. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Amin Karami, Daniel J. Inman. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Applied Physics Letters, 2012; 100 (4): 042901 DOI: 10.1063/1.3679102

Cite This Page:

University of Michigan. "Heart-powered pacemaker could one day eliminate battery-replacement surgery." ScienceDaily. ScienceDaily, 2 March 2012. <www.sciencedaily.com/releases/2012/03/120302193756.htm>.
University of Michigan. (2012, March 2). Heart-powered pacemaker could one day eliminate battery-replacement surgery. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2012/03/120302193756.htm
University of Michigan. "Heart-powered pacemaker could one day eliminate battery-replacement surgery." ScienceDaily. www.sciencedaily.com/releases/2012/03/120302193756.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Powering Pacemakers With Heartbeat Vibrations

Feb. 1, 2012 Aerospace engineers have developed a prototype device that could power a pacemaker using a source that is surprisingly close to the heart of the matter: vibrations in the chest cavity that are due ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins