Featured Research

from universities, journals, and other organizations

Northern Lights: First-ever measurement of auroral turbulence using a nanosatellite radar receiver

Date:
March 22, 2012
Source:
SRI International
Summary:
Researchers have taken the first-ever measurement of naturally occurring auroral turbulence recorded using a nanosatellite radar receiver.

Researchers have taken the first-ever measurement of naturally occurring auroral turbulence recorded using a nanosatellite radar receiver.
Credit: Image courtesy of CSA/University of Calgary/Astronomy North

Researchers from SRI International and the University of Michigan have taken the first-ever measurement of naturally occurring auroral turbulence recorded using a nanosatellite radar receiver.

The research was done with support from the National Science Foundation (NSF) and NASA's Educational Launch of Nanosatellites (ELaNa) Initiative.

The distinctive radar echoes recorded on March 8 were taken with the Radio Aurora Explorer (RAX) CubeSat. The RAX nanosatellite measured turbulence over Fairbanks, Alaska that was a direct result of a geomagnetic storm triggered by the largest solar flare in the past five years. Earth's high latitude ionosphere, a region of the upper atmosphere associated with solar-driven aurora or "northern lights," becomes highly unstable when large currents flow during geomagnetic storms. RAX was specifically designed by SRI and the University of Michigan to measure this auroral turbulence from an orbital vantage point inaccessible to traditional ground-based radars.

"The RAX radar echo discovery has convincingly proved that miniature satellites, beyond their role as teaching tools, can provide high caliber measurements for fundamental space weather research," said Therese Moretto Jorgensen, Ph.D., Geospace program director in the Division of Atmospheric and Geospace Sciences at the National Science Foundation.

The project's mission was to use small satellites called CubeSats to remotely explore formation of charged particle filaments created in response to intense electrical currents in space. These plasma structures, a form of turbulence called field-aligned irregularities (FAIs), can distort communication and navigation signals such as global positioning systems (GPS). During the recent solar flare, RAX measured FAI echoes using the Poker Flat Incoherent Scatter Radar (PFISR), an NSF research radar operated by SRI.

"The recently collected radar echoes allow us to determine the root cause and to possibly predict future disturbances in the auroral ionosphere -- disturbances that can severely compromise communication and GPS satellites," said Hasan Bahcivan, Ph.D., a research physicist in SRI's Center for Geospace Studies, and principal investigator of the RAX mission.

A team of University of Michigan students under the direction of James Cutler, Ph.D., an assistant professor in the Aerospace Engineering Department, designed, built, and operated the satellite and gathered the radar echo data.

RAX was the first CubeSat to be selected as part of an NSF program to use small satellites for space weather and atmospheric research. The RAX CubeSat is a three liter satellite weighing three kilograms. It was launched by NASA on October 28, 2011, and has since completed 18 experiments.

This material is based upon work supported by the National Science Foundation under Grant No. ATM-0838054.


Story Source:

The above story is based on materials provided by SRI International. Note: Materials may be edited for content and length.


Cite This Page:

SRI International. "Northern Lights: First-ever measurement of auroral turbulence using a nanosatellite radar receiver." ScienceDaily. ScienceDaily, 22 March 2012. <www.sciencedaily.com/releases/2012/03/120322100303.htm>.
SRI International. (2012, March 22). Northern Lights: First-ever measurement of auroral turbulence using a nanosatellite radar receiver. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2012/03/120322100303.htm
SRI International. "Northern Lights: First-ever measurement of auroral turbulence using a nanosatellite radar receiver." ScienceDaily. www.sciencedaily.com/releases/2012/03/120322100303.htm (accessed July 26, 2014).

Share This




More Space & Time News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins