Featured Research

from universities, journals, and other organizations

Highly flexible despite hard-wiring: Even slight stimuli change the information flow in the brain

Date:
March 23, 2012
Source:
Max-Planck-Gesellschaft
Summary:
When looking at an optical illusion that can appear as either one cup or two faces, which do you see first? What we believe we see in one of the most famous optical illusions changes in a split second; and so does the path that the information takes in the brain. Changes in the information processing can be triggered even by a slight stimulus, such as a scent or sound, at the right time.

Images or cup? Due to the rapid reorganization of networks in the brain we perceive different elements of the image.
Credit: Demian Battaglia/ MPI for Dynamics and Self-Organization

One cup or two faces? What we believe we see in one of the most famous optical illusions changes in a split second; and so does the path that the information takes in the brain. In a new theoretical study, scientists of the Max Planck Institute for Dynamics and Self-Organization, the Bernstein Center Göttingen and the German Primate Center now show how this is possible without changing the cellular links of the network. The direction of information flow changes, depending on the time pattern of communication between brain areas. This reorganisation can be triggered even by a slight stimulus, such as a scent or sound, at the right time.

Related Articles


The way that the different regions of the brain are connected with each other plays a significant role for information processing. This processing can be changed by the assembling and disassembling of nerve fibres joining distant brain circuits. But such events are much too slow to explain rapid changes in perception. From experimental studies it was known that the responsible actions must be at least two orders of magnitude faster. The Göttingen scientists now show for the first time that it is possible to change the information flow in a tightly interconnected network in a simple manner.

Many areas of the brain display a rhythmic nerve cell activity. "The interacting brain areas are like metronomes that tick at the same speed and in a distinct temporal pattern," says the physicist and principal investigator Demian Battaglia. The researchers were now able to demonstrate that this temporal pattern determines the information flow. "If one of the metronomes is affected, e.g. through an external stimulus, then it changes beat, ticking in an altered temporal pattern compared to the others. The other areas adapt to this new situation through self-organisation and start playing a different drum beat as well. It is therefore sufficient to impact one of the areas in the network to completely reorganize its functioning, as we have shown in our model," explains Battaglia.

The applied perturbation does not have to be particularly strong. "It is more important that the 'kick' occurs at exactly the right time of the rhythm," says Battaglia. This might play a significant role for perception processes: "When viewing a picture, we are trained to recognize faces as quickly as possible -- even if there aren't any," points out the Göttingen researcher. "But if we smell a fragrance reminiscent of wine, we immediately see the cup in the picture. This allows us to quickly adjust to things that we did not expect, changing the focus of our attention."

Next, the scientists want to test the model on networks with a more realistic anatomy. They also hope that the findings inspire future experimental studies, as Battaglia says: "It would be fantastic if, in some years, certain brain areas could be stimulated so finely and precisely that the theoretically predicted effects can be measured through imaging methods."


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Demian Battaglia, Annette Witt, Fred Wolf, Theo Geisel. Dynamic Effective Connectivity of Inter-Areal Brain Circuits. PLoS Computational Biology, 2012; 8 (3): e1002438 DOI: 10.1371/journal.pcbi.1002438

Cite This Page:

Max-Planck-Gesellschaft. "Highly flexible despite hard-wiring: Even slight stimuli change the information flow in the brain." ScienceDaily. ScienceDaily, 23 March 2012. <www.sciencedaily.com/releases/2012/03/120323205339.htm>.
Max-Planck-Gesellschaft. (2012, March 23). Highly flexible despite hard-wiring: Even slight stimuli change the information flow in the brain. ScienceDaily. Retrieved April 2, 2015 from www.sciencedaily.com/releases/2012/03/120323205339.htm
Max-Planck-Gesellschaft. "Highly flexible despite hard-wiring: Even slight stimuli change the information flow in the brain." ScienceDaily. www.sciencedaily.com/releases/2012/03/120323205339.htm (accessed April 2, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, April 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) — While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) — European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) — According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) — Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins