Featured Research

from universities, journals, and other organizations

Researchers develop a new cell and animal model of inflammatory breast cancer

Date:
April 4, 2012
Source:
Fox Chase Cancer Center
Summary:
Inflammatory breast cancer is a very aggressive, often misunderstood type of cancer. The five-year survival rate is between 25 and 50 percent. The reason for the poor prognosis is that IBC usually grows rapidly and often spreads quickly to other parts of the body. Researchers have developed a new cell and animal model that holds promise for providing a detailed understanding the disease and for developing effective interventions.

Inflammatory breast cancer (IBC) is a very aggressive, often misunderstood type of cancer that is diagnosed more frequently in younger women compared with other types of breast cancer. The five-year survival rate is between 25 and 50 percent -- significantly lower than the survival rate for other types of breast cancer. The reason for the poor prognosis is that IBC usually grows rapidly and often spreads quickly to other parts of the body, including the brain, bone and lymph nodes. In an effort to better understand the biology of IBC, researchers at Fox Chase Cancer Center have developed a new cell and animal model that holds promise for providing a detailed understanding of the molecular mechanisms underlying the disease and for developing effective interventions.

"In order for us to improve the treatment of these patients, we need to understand the biology of the disease -- why these cells are so aggressive, invade very early on, and are resistant to standard treatments -- and this starts with having good laboratory and preclinical models," says Massimo Cristofanilli, MD, FACP, chairman of Fox Chase's department of medical oncology and senior investigator for the research, which will be presented at the AACR Annual Meeting 2012 on April 4.

The researchers developed a unique model that recapitulates the aggressive metastasis and cancer stem cell activity associated with poor outcomes in patients with IBC. Understanding of the molecular basis of IBC may help increase the research community's knowledge of the metastatic process of other types of breast cancers.

"Because there are only a few models of inflammatory breast cancer, it's important to develop more models of this disease, and ours represents an ideal model to evaluate stem cell-targeting therapies," says Sandra Fernandez, PhD, assistant research professor at Fox Chase and lead author on the study.

To develop the new disease model, Fernandez, Cristofanilli and their colleagues developed an IRB-approved prospective protocol allowing for the collection of tissue and pleural fluid from patients with advanced IBC. The new cell line, known as FC-IBC02, was established from the pleural fluid collected from a 49-year-old patient whose cells lacked the protein HER2/neu, as well as receptors for the female hormones estrogen and progesterone. About 15 percent of breast cancer patients share these features and, as a result, they do not respond to hormonal therapies and certain medications that target these proteins. "Currently, the only option to treat these patients is chemotherapy," Fernandez says. "So it's important to have a specific model that we can use to test different drugs and see which ones work for this kind of disease."

Moreover, the researchers grew culture tumor cells derived from the patient's fluid and found that they contained a large amount of the protein tetraspanin CD151, which controls tumor cell migration and invasion. In addition, these cells formed multicellular spheroids that displayed markers of cancer stem cells, including the marker CD44. When injected into the mammary fat pad of mice, the tumor spheroids rapidly developed into tumors and spread to the lungs.

Furthermore, using the latest CytoScan HD arrays, the FCCC researchers found that these cells have multiple losses and gains across almost the whole genome, a phenomenon known as chromothripsis. In particular, FC-IBC02 cells have an amplification on chromosome 8q where the oncogene MYC is located and a deletion on chromosome 7p where tumor suppressor gene p53 is embedded. These analysis will identify novel molecular targets to fight the disease. By culturing cells from a large pool of patients, they will look for promising targets that are commonly associated with IBC as well as test new stem cell-targeting drugs that could reduce metastasis.

"I think it's a major step forward for us as clinicians and scientists to develop better therapies and new diagnostic tools for patients with inflammatory breast cancer," Cristofanilli says. "We would like to translate our discoveries from bench to bedside very quickly, as these patients really need new treatments."

Co-investigators on this study include Zhaomei Mu, Lucy Aburto, and Xiaoshen Dong from Fox Chase; Khoi Chu, Kimberly Boley, and Fredika Robertson of the Anderson Cancer Center in Houston, Texas; and Fedor Berditchevski of the University of Birmingham, School of Cancer, Edgbaston, Birmingham, UK.

This project was funded by the Susan G. Komen Promise grant KG081287 and Pudney family' funds.


Story Source:

The above story is based on materials provided by Fox Chase Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

Fox Chase Cancer Center. "Researchers develop a new cell and animal model of inflammatory breast cancer." ScienceDaily. ScienceDaily, 4 April 2012. <www.sciencedaily.com/releases/2012/04/120404102646.htm>.
Fox Chase Cancer Center. (2012, April 4). Researchers develop a new cell and animal model of inflammatory breast cancer. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2012/04/120404102646.htm
Fox Chase Cancer Center. "Researchers develop a new cell and animal model of inflammatory breast cancer." ScienceDaily. www.sciencedaily.com/releases/2012/04/120404102646.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins