Featured Research

from universities, journals, and other organizations

Change from lab to natural setting dramatically alters biological and genetic determinants of behavior

April 4, 2012
University of Leicester
Research into the behavior of flies and their sleep-wake mechanism in a natural environment flies in the face of over 40 years of research in controlled laboratory conditions.

Male fruit fly (Drosophila Melanogaster) on a blade of grass.
Credit: © Studiotouch / Fotolia

A unique experiment carried out in a Leicester garden, and concurrently in a garden in Italy, has yielded surprising results that has changed scientific knowledge and is published in the journal Nature.

Related Articles

Research into the behaviour of flies and their sleep-wake mechanism -- their 24-hour behavioural rhythms -- was conducted by researchers from the Universities of Leicester and Padova. Their findings flew in the face of over 40 years' research in controlled laboratory conditions about the behaviour of these insects.

The study of fly rhythms is important because the same 24-hour clock is found in almost all organisms, including some bacteria, but the genetic basis of it is practically the same among insects and humans so has important implications for the study of many health problems which have a rhythmic component. These include sleep disorders, the impact of shift work schedules on the body, jetlag, even obesity and cardiovascular disturbances. Indeed biological rhythms can even be potentially targeted in insects of medical and agricultural importance such as flies that spoil our fruit -- a big problem all over the world.

Bambos Kyriacou, Professor of Behavioural Genetics at the University of Leicester, who led the study in the UK, turned his own garden into a 'lab' for the study -- using his children's playhouse as the experimental centre.

He said: "The fruitfly, Drosophila melanogaster is the 'workhorse' for genetic research into higher organisms. It has been the major model system for understanding how the 24 hour clock works, and how genes that control these 'biorhythms', build the 'bodyclock'. Luckily, it turns out that the clock mechanism is conserved from flies to mammals so studying these genes in the fly does the same job for the human.

"Much of the work done over the past 40 years on fly rhythms uses the flies sleep-wake cycle as a read-out for the clock, and how the fly wakes up in the morning, has a mid-day siesta, and is active again in the evenings, before falling asleep at night, has been dissected in exquisite detail both genetically and neurobiologically.

"So, for example, we know which clock neurons control the fly's wake-up call in the morning and which ones determine its evening behavioural activity. However, all this work has been done in the laboratory, under very artificial conditions where the temperature is constant, and the light comes on suddenly in the morning and goes off suddenly at night.

"This study, published in Nature did something different. By monitoring the behavioural rhythms of the flies and the temperature, sunlight, moonlight, humidity etc in a warm (Italian) and cold and wet (Leicester) environment, we were able to see exactly how flies react to changing light levels at dawn and dusk and to cycling temperatures during the day.

"The results were very surprising -- flies simply did not do what they should. Instead of a siesta in the middle of the day, they became most active at that time. Instead of arrhythmic clock mutants showing defective rhythms, they showed perfectly good behavioural cycles, and instead of flies anticipating dawn as they do in the lab, they simply reacted to the changing light levels during the twilights.

In other words, some of the ideas we had about how rhythmic behaviour in the lab might correspond to that in the wild, turned out to be wrong.

"The clock genes identified over the past four decades have defined the field of chronobiology- however it may be that the importance of these genes for survival has been overstated. This study suggests that behaviour, which is the brain's way of changing its environment (ie if it's too cold, go somewhere where it's hot) does not need to anticipate changes in the environment -- it can simply react to them.

"However, underlying physiology probably does need to anticipate regular changes. For example, peripheral tissues (liver, kidneys etc) might need to anticipate regular environmental changes because they cannot react as quickly as the brain.

"This work also suggests that studying organisms in more natural environments is important because it can be applied to animal welfare. For example, providing more natural environments for animals that are farmed indoors, may enhance their health and well-being. "

The work in the UK and Italy was done predominantly by Supriya Bhutani, who was a PhD student in the fly lab in the Genetics Department at the University of Leicester, and Stefano Vanin, an Italian postdoc in the laboratory of Prof Kyriacou's long term associate, Prof Rudi Costa from the Biology Department at the University of Padova -- where Galileo did his experiments -- Stefano did the same natural experiments in his garden in the nearby town of Treviso.

Funding for the research came predominantly from a number of sources, the European Community, the Biotechnology and Biological Sciences and Natural Environment Research Councils, the Royal Society, the Medical Research Council, the Italian Space Agency and the Ministero dell'Universitΰ e delle Ricerca.

Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.

Journal Reference:

  1. Stefano Vanin, Supriya Bhutani, Stefano Montelli, Pamela Menegazzi, Edward W. Green, Mirko Pegoraro, Federica Sandrelli, Rodolfo Costa, Charalambos P. Kyriacou. Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature, 2012; DOI: 10.1038/nature10991

Cite This Page:

University of Leicester. "Change from lab to natural setting dramatically alters biological and genetic determinants of behavior." ScienceDaily. ScienceDaily, 4 April 2012. <www.sciencedaily.com/releases/2012/04/120404133704.htm>.
University of Leicester. (2012, April 4). Change from lab to natural setting dramatically alters biological and genetic determinants of behavior. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/04/120404133704.htm
University of Leicester. "Change from lab to natural setting dramatically alters biological and genetic determinants of behavior." ScienceDaily. www.sciencedaily.com/releases/2012/04/120404133704.htm (accessed December 22, 2014).

Share This

More From ScienceDaily

More Mind & Brain News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) — Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins