Featured Research

from universities, journals, and other organizations

Efficiency of multi-hop wireless networks boosted

Date:
April 19, 2012
Source:
North Carolina State University
Summary:
Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers have developed a more efficient data transmission approach that can boost the amount of data the networks can transmit by 20 to 80 percent.

Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers from North Carolina State University have developed a more efficient data transmission approach that can boost the amount of data the networks can transmit by 20 to 80 percent.

"Our approach increases the average amount of data that can be transmitted within the network by at least 20 percent for networks with randomly placed nodes -- and up to 80 percent if the nodes are positioned in clusters within the network," says Dr. Rudra Dutta, an associate professor of computer science at NC State and co-author of a paper on the research. The approach also makes the network more energy efficient, which can extend the lifetime of the network if the nodes are battery-powered.

Multi-hop wireless networks utilize multiple wireless nodes to provide coverage to a large area by forwarding and receiving data wirelessly between the nodes. However, these networks have "hot spots" -- places in the network where multiple wireless transmissions can interfere with each other. This limits how quickly the network can transfer data, because the nodes have to take turns transmitting data at these congested points.

Data can be transmitted at low power over short distances, which limits the degree of interference with other nodes. But this approach means that the data may have to be transmitted through many nodes before reaching its final destination. Or, data can be transmitted at high power, which means the data can be sent further and more quickly -- but the powerful transmission may interfere with transmissions from many other nodes.

Dutta and Ph.D. student Parth Pathak developed an approach called centrality-based power control to address the problem. Their approach uses an algorithm that instructs each node in the network on how much power to use for each transmission depending on its final destination.

The algorithm optimizes system efficiency by determining when a powerful transmission is worth the added signal disruption, and when less powerful transmissions are needed.

The paper, "Centrality-based power control for hot-spot mitigation in multi-hop wireless networks," is published online by the journal Computer Communications, and is in press for a print version of an upcoming issue of the journal. Pathak is lead author. The research was supported in part by the U.S. Army Research Office.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Parth H. Pathak, Rudra Dutta. Centrality-based power control for hot-spot mitigation in multi-hop wireless networks. Computer Communications, 2012; DOI: 10.1016/j.comcom.2012.01.023

Cite This Page:

North Carolina State University. "Efficiency of multi-hop wireless networks boosted." ScienceDaily. ScienceDaily, 19 April 2012. <www.sciencedaily.com/releases/2012/04/120419102518.htm>.
North Carolina State University. (2012, April 19). Efficiency of multi-hop wireless networks boosted. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2012/04/120419102518.htm
North Carolina State University. "Efficiency of multi-hop wireless networks boosted." ScienceDaily. www.sciencedaily.com/releases/2012/04/120419102518.htm (accessed August 1, 2014).

Share This




More Computers & Math News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Newsy (July 31, 2014) Google says it is following Europe's new "Right To Be Forgotten Law," which eliminates user information upon request, but only to a certain degree. Video provided by Newsy
Powered by NewsLook.com
Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Sprint's Custom Prepaid Plans Draw Net Neutrality Fire

Sprint's Custom Prepaid Plans Draw Net Neutrality Fire

Newsy (July 31, 2014) Sprint's Virgin Mobile Custom plan offers optional social network access that doesn't count against data caps — but critics are crying foul. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins