Featured Research

from universities, journals, and other organizations

Efficiency of multi-hop wireless networks boosted

Date:
April 19, 2012
Source:
North Carolina State University
Summary:
Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers have developed a more efficient data transmission approach that can boost the amount of data the networks can transmit by 20 to 80 percent.

Multi-hop wireless networks can provide data access for large and unconventional spaces, but they have long faced significant limits on the amount of data they can transmit. Now researchers from North Carolina State University have developed a more efficient data transmission approach that can boost the amount of data the networks can transmit by 20 to 80 percent.

Related Articles


"Our approach increases the average amount of data that can be transmitted within the network by at least 20 percent for networks with randomly placed nodes -- and up to 80 percent if the nodes are positioned in clusters within the network," says Dr. Rudra Dutta, an associate professor of computer science at NC State and co-author of a paper on the research. The approach also makes the network more energy efficient, which can extend the lifetime of the network if the nodes are battery-powered.

Multi-hop wireless networks utilize multiple wireless nodes to provide coverage to a large area by forwarding and receiving data wirelessly between the nodes. However, these networks have "hot spots" -- places in the network where multiple wireless transmissions can interfere with each other. This limits how quickly the network can transfer data, because the nodes have to take turns transmitting data at these congested points.

Data can be transmitted at low power over short distances, which limits the degree of interference with other nodes. But this approach means that the data may have to be transmitted through many nodes before reaching its final destination. Or, data can be transmitted at high power, which means the data can be sent further and more quickly -- but the powerful transmission may interfere with transmissions from many other nodes.

Dutta and Ph.D. student Parth Pathak developed an approach called centrality-based power control to address the problem. Their approach uses an algorithm that instructs each node in the network on how much power to use for each transmission depending on its final destination.

The algorithm optimizes system efficiency by determining when a powerful transmission is worth the added signal disruption, and when less powerful transmissions are needed.

The paper, "Centrality-based power control for hot-spot mitigation in multi-hop wireless networks," is published online by the journal Computer Communications, and is in press for a print version of an upcoming issue of the journal. Pathak is lead author. The research was supported in part by the U.S. Army Research Office.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Parth H. Pathak, Rudra Dutta. Centrality-based power control for hot-spot mitigation in multi-hop wireless networks. Computer Communications, 2012; DOI: 10.1016/j.comcom.2012.01.023

Cite This Page:

North Carolina State University. "Efficiency of multi-hop wireless networks boosted." ScienceDaily. ScienceDaily, 19 April 2012. <www.sciencedaily.com/releases/2012/04/120419102518.htm>.
North Carolina State University. (2012, April 19). Efficiency of multi-hop wireless networks boosted. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2012/04/120419102518.htm
North Carolina State University. "Efficiency of multi-hop wireless networks boosted." ScienceDaily. www.sciencedaily.com/releases/2012/04/120419102518.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) — A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Malaysia Airlines Hack: Lizard Squad, ISIS Involved?

Malaysia Airlines Hack: Lizard Squad, ISIS Involved?

Newsy (Jan. 26, 2015) — Malaysia Airlines on Sunday experienced website outages and what appeared to be an attack by hacker group Lizard Squad. Video provided by Newsy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Sundance Films Tap Into Virtual Reality

Sundance Films Tap Into Virtual Reality

Newsy (Jan. 25, 2015) — Virtual reality headsets offer more experiences for viewers and filmmakers at the Sundance Film Festival. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins