Featured Research

from universities, journals, and other organizations

Arresting cancer by energy starvation

Date:
May 21, 2012
Source:
National University of Singapore
Summary:
Researchers discovered how a drug-lead compound kills cancer cells by 'starving' them of energy, hence preventing tumor formation.

The crystal structure of a dimer of human glutaminase (orange and purple) bound to its inhibitor BPTES (cyan).
Credit: Low Boon Chuan and J Sivaraman

Researchers discovered how a drug-lead compound kills cancer cells by 'starving' them of energy, hence preventing tumour formation.

Related Articles


A team of scientists from the National University of Singapore's (NUS) Department of Biological Sciences and Mechanobiology Institute have discovered how a drug-lead compound -- a compound that is undergoing preclinical trials as a potential drug -- can deprive cancer cells of energy and stop them from growing into a tumour. This drug-lead compound is named BPTES.

This is the first time a research group has provided evidence showing how a drug-lead compound suppresses tumour formation.

Building on the new findings, the NUS team also derived positive results for a novel dual-drug treatment regime involving BPTES that kills kidney and breast cancer cells more effectively.

The team led by Associate Professor Low Boon Chuan and Associate Professor Jayaraman Sivaraman first published their findings in the Proceedings of the National Academy of Sciences (PNAS) on 26 April 2012.

Killing cancer cells by 'starving' them of energy

Classic experiments in cancer biology have demonstrated that cancer cells feed off the breakdown of the amino acid glutamine to gain energy and grow into a tumour. While it is known that human glutaminase is the first enzyme in catalysing this series of biochemical reactions, little is known about how its activity is controlled, and how it can be manipulated.

The NUS research team has successfully identified the mechanism in which the BPTES that can bind and inhibit glutaminase, can effectively starve the cancer cells of their energy source, and hence, could potentially prevent tumour growth.

In addition, the team has also found that the glutaminase activity can be activated upon the addition of phosphate by epidermal growth factor signaling a pathway that controls cancer cells proliferation. By using another inhibitor to block the kinase Mek2 within this cancer-causing pathway, coupled with the use of BPTES, the combined therapeutic effect is more potent and less toxic. This raises the hope of offering a new dual-drug cancer treatment regime for cancers such as lymphoma, prostate, glioblastoma, breast and kidney cancer cells that is more effective and with less side effects.

The Next Step

Armed with structural insights into the binding and signaling pathway that activates glutaminase, the NUS research team is conducting more studies to determine whether a combination of drugs would be even more effective at inhibiting glutaminase activity and hence, tumour formation.

Using the knowledge that they gained through the current studies, the research team will also look into optimising the tumour suppression property of BPTES to increase its efficiency and lower its side-effects.


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. Thangavelu, C. Q. Pan, T. Karlberg, G. Balaji, M. Uttamchandani, V. Suresh, H. Schuler, B. C. Low, J. Sivaraman. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proceedings of the National Academy of Sciences, 2012; 109 (20): 7705 DOI: 10.1073/pnas.1116573109

Cite This Page:

National University of Singapore. "Arresting cancer by energy starvation." ScienceDaily. ScienceDaily, 21 May 2012. <www.sciencedaily.com/releases/2012/05/120521104019.htm>.
National University of Singapore. (2012, May 21). Arresting cancer by energy starvation. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2012/05/120521104019.htm
National University of Singapore. "Arresting cancer by energy starvation." ScienceDaily. www.sciencedaily.com/releases/2012/05/120521104019.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) — Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins