Featured Research

from universities, journals, and other organizations

Undergraduate science and engineering teaching needs improvement

Date:
May 21, 2012
Source:
National Academy of Sciences
Summary:
Discipline-based education research has generated insights that could help improve undergraduate education in science and engineering, but these findings have not yet prompted widespread changes in teaching practice, says a new report.

Discipline-based education research (DBER) has generated insights that could help improve undergraduate education in science and engineering, but these findings have not yet prompted widespread changes in teaching practice, says a new report from the National Research Council.Science and engineering faculty, institutions, disciplinary societies, and professional societies should all support high-quality DBER and the adoption of the evidence-based teaching strategies that have emerged from it, the report says.

DBER is a collection of related research fields that investigate how students learn in particular scientific disciplines and identify ways to improve instruction. This research is emerging in many scientific disciplines, including physics, chemistry, biology, the geosciences, and astronomy, as well as in engineering.A DBER scholar in physics, for example, might investigate how students learn concepts such as force or acceleration and try to identify effective ways for instructors to teach these concepts.

Scholars in all DBER fields share the goal of improving teaching and learning by using findings from empirical research.Although they have made inroads in terms of establishing their fields, the report says, these scholars still face challenges in identifying pathways for training and professional recognition. And findings from DBER have not yet led to widespread change in the teaching of undergraduate science and engineering.

Notable research findings from DBER on undergraduate teaching and learning include:

  • Student-centered learning strategies can enhance learning more than traditional lectures. Examples of effective, research-based approaches are making lectures more interactive, having students work in groups, and incorporating authentic problems and activities.
  • Students have incorrect understandings about fundamental concepts -- particularly phenomena that are not directly observable, such as those that involve very large or very small scales of time and space. For example, students often have difficulty understanding processes that involve deep time, such as Earth's history or natural selection, and many learning challenges in chemistry result from students' difficulties in comprehending that matter is made up of discrete particles.DBER has identified instructional techniques that may help, like using "bridging analogies" that link students' correct understandings and the situation about which they harbor a misconception.
  • Students are challenged by important aspects of the domain that can seem easy or obvious to experts. For instance, in problem solving students tend to focus on the superficial aspects of a problem rather than its deep structure.Students in all disciplines also have trouble understanding representations like graphs, models, and simulations. These challenges pose serious impediments to learning in science and engineering, especially if instructors are not aware of them.Several strategies appear to improve problem-solving skills, such as providing support and prompts -- known as "scaffolding" -- as students work their way through problems.

Institutions, disciplinary societies, and professional societies should support faculty efforts to use evidence-based teaching strategies in their classrooms. In addition, they should work together to prepare future faculty who understand research findings on learning and teaching and who value effective teaching as part of their career aspirations.And they should support venues for DBER scholars to share their research findings at meetings and in high-quality journals.

Future directions for DBER investigations should include research that explores similarities and differences in learning among various student populations; longitudinal studies that can shed light on how students acquire and retain understanding (or misunderstanding) of concepts; studies that investigate student outcomes other than test scores; and studies of organizational and behavior change that could aid the translation of DBER findings into practice.


Story Source:

The above story is based on materials provided by National Academy of Sciences. Note: Materials may be edited for content and length.


Cite This Page:

National Academy of Sciences. "Undergraduate science and engineering teaching needs improvement." ScienceDaily. ScienceDaily, 21 May 2012. <www.sciencedaily.com/releases/2012/05/120521115702.htm>.
National Academy of Sciences. (2012, May 21). Undergraduate science and engineering teaching needs improvement. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/05/120521115702.htm
National Academy of Sciences. "Undergraduate science and engineering teaching needs improvement." ScienceDaily. www.sciencedaily.com/releases/2012/05/120521115702.htm (accessed September 1, 2014).

Share This




More Mind & Brain News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com
Electrical Stimulation Boosts Brain Function, Study Says

Electrical Stimulation Boosts Brain Function, Study Says

Newsy (Aug. 29, 2014) Researchers found an improvement in memory and learning function in subjects who received electric pulses to their brains. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins