Featured Research

from universities, journals, and other organizations

Driving without a blind spot may be closer than it appears

Date:
June 7, 2012
Source:
Drexel University
Summary:
A side mirror that eliminates the dangerous “blind spot” for drivers has now received a U.S. patent. The subtly curved mirror, invented by a mathematics professor, dramatically increases the field of view with minimal distortion. designed his mirror using a mathematical algorithm that precisely controls the angle of light bouncing off of the curving mirror, similar to manipulating the direction of each tiny mirror face on a disco ball to make a smooth, nonuniform curve.

A side-by-side comparison of a standard flat driver's side mirror with the mirror Hicks designed. With minimal distortion, Hicks's mirror shows a much wider field of view (the wide area to the left of the silver car seen in the distance, behind the tree, in this image).
Credit: Image courtesy of Drexel University

A side mirror that eliminates the dangerous "blind spot" for drivers has now received a U.S. patent. The subtly curved mirror, invented by Drexel University mathematics professor Dr. R. Andrew Hicks, dramatically increases the field of view with minimal distortion.

Related Articles


Traditional flat mirrors on the driver's side of a vehicle give drivers an accurate sense of the distance of cars behind them but have a very narrow field of view. As a result, there is a region of space behind the car, known as the blind spot, that drivers can't see via either the side or rear-view mirror. It's not hard to make a curved mirror that gives a wider field of view -- no blind spot -- but at the cost of visual distortion and making objects appear smaller and farther away.

Hicks's driver's side mirror has a field of view of about 45 degrees, compared to 15 to 17 degrees of view in a flat driver's side mirror. Unlike in simple curved mirrors that can squash the perceived shape of objects and make straight lines appear curved, in Hicks's mirror the visual distortions of shapes and straight lines are barely detectable. Hicks, a professor in Drexel's College of Arts and Sciences, designed his mirror using a mathematical algorithm that precisely controls the angle of light bouncing off of the curving mirror.

"Imagine that the mirror's surface is made of many smaller mirrors turned to different angles, like a disco ball," Hicks said. "The algorithm is a set of calculations to manipulate the direction of each face of the metaphorical disco ball so that each ray of light bouncing off the mirror shows the driver a wide, but not-too-distorted, picture of the scene behind him."

Hicks noted that, in reality, the mirror does not look like a disco ball up close. There are tens of thousands of such calculations to produce a mirror that has a smooth, nonuniform curve.

Hicks first described thActivate URLe method used to develop this mirror in Optics Letters in 2008.

In the United States, regulations dictate that cars coming off of the assembly line must have a flat mirror on the driver's side. Curved mirrors are allowed for cars' passenger-side mirrors only if they include the phrase "Objects in mirror are closer than they appear."

Because of these regulations, Hicks's mirrors will not be installed on new cars sold in the U.S. any time soon. The mirror may be manufactured and sold as an aftermarket product that drivers and mechanics can install on cars after purchase. Some countries in Europe and Asia do allow slightly curved mirrors on new cars. Hicks has received interest from investors and manufacturers who may pursue opportunities to license and produce the mirror.

The U.S. patent, "Wide angle substantially non-distorting mirror" (United States Patent 8180606) was awarded to Drexel University on May 15, 2012.


Story Source:

The above story is based on materials provided by Drexel University. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Andrew Hicks. Controlling a ray bundle with a free-form reflector. Optics Letters, 2008; 33 (15): 1672 DOI: 10.1364/OL.33.001672

Cite This Page:

Drexel University. "Driving without a blind spot may be closer than it appears." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607122206.htm>.
Drexel University. (2012, June 7). Driving without a blind spot may be closer than it appears. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2012/06/120607122206.htm
Drexel University. "Driving without a blind spot may be closer than it appears." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607122206.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins