Featured Research

from universities, journals, and other organizations

Hulk smash? Maybe not anymore: Scientists block excess aggression in mice

Date:
June 19, 2012
Source:
University of Southern California
Summary:
Pathological rage can be blocked in mice, researchers have found, suggesting potential new treatments for severe aggression, a widespread trait characterized by sudden violence, explosive outbursts and hostile overreactions to stress.

Rage. Pathological rage can be blocked in mice, researchers have found, suggesting potential new treatments for severe aggression, a widespread trait characterized by sudden violence, explosive outbursts and hostile overreactions to stress.
Credit: dundanim / Fotolia

Pathological rage can be blocked in mice, researchers have found, suggesting potential new treatments for severe aggression, a widespread trait characterized by sudden violence, explosive outbursts and hostile overreactions to stress.

Related Articles


In a study appearing June 19 in The Journal of Neuroscience, researchers from USC and Italy identify a critical neurological factor in aggression: a brain receptor that malfunctions in overly hostile mice. When the researchers shut down the brain receptor, which also exists in humans, the excess aggression disappeared.

The findings are a significant breakthrough in developing drug targets for pathological aggression, a component in Alzheimer's disease, autism, bipolar disorder and schizophrenia, among other common psychological disorders.

"From a clinical and social point of view, reactive aggression is absolutely a major problem," said Marco Bortolato, lead author of the study and research assistant professor of pharmacology and pharmaceutical sciences at the USC School of Pharmacy. "We want to find the tools that might reduce impulsive violence."

A large body of independent research, including past work by Bortolato and senior author Jean Shih, USC University Professor and Boyd & Elsie Welin Professor in Pharmacology and Pharmaceutical Sciences at USC, has identified a specific genetic predisposition to pathological aggression: low levels of the enzyme monoamine oxidase A (MAO A). Both male humans and mice with congenital deficiency of the enzyme respond violently in response to stress.

"The same type of mutation that we study in mice is associated with criminal, very violent behavior in humans," Bortolato said. "But we really didn't understand why that it is."

Bortolato and Shih worked backwards to replicate elements of human pathological aggression in mice, including not just low enzyme levels but also the interaction of genetics with early stressful events, such as trauma and neglect during childhood.

"Low levels of MAO A are one basis of the predisposition to aggression in humans. The other is an encounter with maltreatment, and the combination of the two factors appears to be deadly: It results consistently in violence in adults," Bortolato said.

The researchers showed that in excessively aggressive rodents that lack MAO A, high levels of electrical stimulus are required to activate a specific brain receptor in the pre-frontal cortex. Even when this brain receptor does work, it stays active only for a short period of time.

"The fact that blocking this receptor moderates aggression is why this discovery has so much potential. It may have important applications in therapy," Bortolato said. "Whatever the ways environment can persistently affect behavior -- and even personality over the long term -- behavior is ultimately supported by biological mechanisms."

Importantly, the aggression receptor, known as NMDA, is also thought to play a key role in helping us make sense of multiple, coinciding streams of sensory information, according to Bortolato.

The researchers are now studying the potential side effects of drugs that reduce the activity of this receptor.

"Aggressive behaviors have a profound socioeconomic impact, yet current strategies to reduce these staggering behaviors are extremely unsatisfactory," Bortolato said. "Our challenge now is to understand what pharmacological tools and what therapeutic regimens should be administered to stabilize the deficits of this receptor. If we can manage that, this could truly be an important finding."

Sean Godar, a postdoctoral scientist in the Department of Pharmacology and Pharmaceutical Sciences at the School of Pharmacy, was co-lead author of the study. Kevin Chen, a research associate professor at the School of Pharmacy, was a co-author.

The research was funded by the National Institute of Mental Health of the National Institutes of Health under grant R01MH39085, the National Institute of Child Health and Human Development of the National Institutes of Health under grant R21HD070611, the Boyd and Elsie Welin Professorship help by Shih and a USC Zumberge Research Individual Grant to Bortolato.


Story Source:

The above story is based on materials provided by University of Southern California. The original article was written by Suzanne Wu. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "Hulk smash? Maybe not anymore: Scientists block excess aggression in mice." ScienceDaily. ScienceDaily, 19 June 2012. <www.sciencedaily.com/releases/2012/06/120619230107.htm>.
University of Southern California. (2012, June 19). Hulk smash? Maybe not anymore: Scientists block excess aggression in mice. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/06/120619230107.htm
University of Southern California. "Hulk smash? Maybe not anymore: Scientists block excess aggression in mice." ScienceDaily. www.sciencedaily.com/releases/2012/06/120619230107.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins