Featured Research

from universities, journals, and other organizations

Rapamycin effective in mouse model of inherited heart disease and muscular dystrophies

Date:
July 25, 2012
Source:
Buck Institute for Age Research
Summary:
Rapamycin, an FDA-approved immunosuppressant drug under study in aging research labs, improved function and extended survival in mice suffering from a genetic mutation which leads to dilated cardiomyopathy (DCM) and rare muscular dystrophies in humans. There are currently no effective treatment for the diseases, which include Emery-Dreifuss Muscular Dystrophy and Limb-Girdle Muscular Dystrophy. The familial form of DCM often leads to sudden heart failure and death when those affected reach their 40s and 50s.

An FDA-approved drug improves cardiac and skeletal muscle function and extends lifespan.

Rapamycin, an immunosuppressant drug used in a variety of disease indications and under study in aging research labs around the world, improved function and extended survival in mice suffering from a genetic mutation which leads to dilated cardiomyopathy (DCM) and rare muscular dystrophies in humans. There are currently no effective treatments for the diseases, which include Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy. The familial form of DCM often leads to sudden heart failure and death when those affected reach their 40s and 50s.

In research published in the July 25, 2012 online edition of Science Translational Medicine, scientists from the Buck Institute and other organizations focused on mutations in the gene LMNA, which produces A-type lamins. Mutations in this gene are associated with at least 13 diseases, with DCM among the most common. DCM accounts for 60 percent of all cardiomyopathy cases. LMNA mutations may account for up to one-third of patients that are diagnosed as having DCM and conduction disease. DCM causes a thinning of the left ventricle and loss of cardiac function.

The study showed that deletion of the LMNA gene led to ramped up activity in the molecular pathway mTOR (mammalian target of rapamycin) and that treatment with rapamycin turns down the abnormal signaling. Senior author Brian K. Kennedy, PhD, President and CEO of the Buck Institute for Research on Aging, says treatment with rapamycin extended mouse lifespan by 60 percent in a relatively rapid onset model of disease.

"What's particularly exciting is that this work offers a therapeutic possibility where there has been none," said Kennedy. "This study, along with others, suggests that clinical trials of rapamycin and its derivatives be initiated for human patients suffering from this form of DCM."

Rapamycin has been shown to extend healthspan in normal mice. It and the mTOR pathway are being intensively studied in aging research laboratories around the world. Kennedy, who came to the Buck Institute from the University of Washington where much of this work was done, said the study first focused on rapamycin in a mouse model of Hutchinson-Gilford Progeria Syndrome, a premature aging disorder that is also based on a mutation in lamin-A. "We found to our surprise that rapamycin is beneficial for DCM instead," he said. "As we investigate and understand the cellular pathways that get disrupted or altered with aging, we will likely be putting our hands on common pathways that become disregulated in various disease states," said Kennedy. "This started out as a study about aging, and it's pointed us toward a specific disease indication, where we might be able to generate a new therapeutic. I am hoping this is the first of many times that this happens."


Story Source:

The above story is based on materials provided by Buck Institute for Age Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fresnida J. Ramos, Steven C. Chen, Michael G. Garelick, Dao-Fu Dai, Chen-Yu Liao, Katherine H. Schreiber, Vivian L. Mackay, Elroy H. An, Randy Strong, Warren C. Ladiges, Peter S. Rabinovitch, Matt Kaeberlein, and Brian K. Kennedy. Rapamycin Reverses Elevated mTORC1 Signaling in Lamin A/C–Deficient Mice, Rescues Cardiac and Skeletal Muscle Function, and Extends Survival. Science Translational Medicine, 25 July 2012: Vol. 4, Issue 144, p. 144ra103 DOI: 10.1126/scitranslmed.3003802

Cite This Page:

Buck Institute for Age Research. "Rapamycin effective in mouse model of inherited heart disease and muscular dystrophies." ScienceDaily. ScienceDaily, 25 July 2012. <www.sciencedaily.com/releases/2012/07/120725142501.htm>.
Buck Institute for Age Research. (2012, July 25). Rapamycin effective in mouse model of inherited heart disease and muscular dystrophies. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/07/120725142501.htm
Buck Institute for Age Research. "Rapamycin effective in mouse model of inherited heart disease and muscular dystrophies." ScienceDaily. www.sciencedaily.com/releases/2012/07/120725142501.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins