Featured Research

from universities, journals, and other organizations

Molecule found that inhibits recovery from stroke

Date:
July 27, 2012
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
Researchers have identified a novel molecule in the brain that, after stroke, blocks the formation of new connections between neurons. As a result, it limits the brain’s recovery. In a mouse model, the researchers showed that blocking this molecule—called ephrin-A5--induces axonal sprouting, that is, the growth of new connections between the brain’s neurons, or cells, and as a result promotes functional recovery.

Researchers at UCLA have identified a novel molecule in the brain that, after stroke, blocks the formation of new connections between neurons. As a result, it limits the brain's recovery. In a mouse model, the researchers showed that blocking this molecule -- called ephrin-A5--induces axonal sprouting, that is, the growth of new connections between the brain's neurons, or cells, and as a result promotes functional recovery.

If duplicated in humans, the identification of this molecule could pave the way for a more rapid recovery from stroke and may allow a synergy with existing treatments, such as physical therapy.

Dr. S. Thomas Carmichael, professor of neurology, and colleagues performed the study.

The research appears online this week in the journal PNAS.

Stroke is the leading cause of adult disability because of the brain's limited capacity for repair. An important process in recovery after stroke may be in the formation of new connections, termed axonal sprouting. The adult brain inhibits axonal sprouting and the formation of these connections. In previous work the researchers found, paradoxically, that the brain sends mixed signals after a stroke -- activating molecules that both stimulate and inhibit axonal sprouting. In this present work, the researchers have identified the effect of one molecule that inhibits axonal sprouting and determined the new connections in the brain that are necessary to form for recovery.

The researchers also developed a new tissue bioengineering approach for delivering drugs to the brain after stroke. This approach uses a biopolymer hydrogel, or a gel of naturally occurring brain proteins, to release neural repair molecules directly to the target region for recovery in stroke -- the tissue adjacent to the center of the stroke.

Last, the paper also shows that the more behavioral activity after stroke, such as the amount an impaired limb is used, the more new connections are directly stimulated to form in the injured brain. This direct link between movement patterns, like those that occur in neurorehabilitation, and the formation of new brain connections, provides a biological mechanism for the effects of some forms of physical therapy after stroke.


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. The original article was written by Mark Wheeler. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. J. Overman, A. N. Clarkson, I. B. Wanner, W. T. Overman, I. Eckstein, J. L. Maguire, I. D. Dinov, A. W. Toga, S. T. Carmichael. PNAS Plus: A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1204386109

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "Molecule found that inhibits recovery from stroke." ScienceDaily. ScienceDaily, 27 July 2012. <www.sciencedaily.com/releases/2012/07/120727095538.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2012, July 27). Molecule found that inhibits recovery from stroke. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2012/07/120727095538.htm
University of California, Los Angeles (UCLA), Health Sciences. "Molecule found that inhibits recovery from stroke." ScienceDaily. www.sciencedaily.com/releases/2012/07/120727095538.htm (accessed August 20, 2014).

Share This




More Mind & Brain News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com
Mental, Neurological Disabilities Up 21% Among Kids

Mental, Neurological Disabilities Up 21% Among Kids

Newsy (Aug. 18, 2014) New numbers show a decade's worth of changes in the number of kids with disabilities. They suggest mental disabilities are up; physical ones are down. Video provided by Newsy
Powered by NewsLook.com
Fake Weed Wreaks Havoc In New Hampshire

Fake Weed Wreaks Havoc In New Hampshire

Newsy (Aug. 17, 2014) New Hampshire's governor declared a state of emergency after more than 40 overdoses of synthetic marijuana in one week throughout the state. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins