Featured Research

from universities, journals, and other organizations

Vaccine targets malignant brain cancer antigens, significantly lengthens survival

Date:
August 15, 2012
Source:
Cedars-Sinai Medical Center
Summary:
An experimental immune-based therapy more than doubled median survival of patients diagnosed with the most aggressive malignant brain tumor, researchers report.

An experimental immune-based therapy more than doubled median survival of patients diagnosed with the most aggressive malignant brain tumor, Cedars-Sinai Medical Center researchers reported in Cancer Immunology, Immunotherapy, published online Aug. 3.
Credit: Cedars-Sinai Medical Center

An experimental immune-based therapy more than doubled median survival of patients diagnosed with the most aggressive malignant brain tumor, Cedars-Sinai Medical Center researchers reported in Cancer Immunology, Immunotherapy, published online Aug. 3.

Median survival in a Phase I clinical trial at Cedars-Sinai's Johnnie L. Cochran, Jr. Brain Tumor Center was 38.4 months, significantly longer than the typical 14.6-month survival of patients with newly diagnosed glioblastoma receiving standard therapy alone, which includes radiation and chemotherapy.

Median progression-free survival -- the time from treatment to tumor recurrence -- was 16.9 months, compared to the typical 6.9 months with standard care.

The study included 16 newly diagnosed patients who could be properly evaluated between May 2007 and January 2010. At later follow-up, six patients (38 percent) -- ranging from 49 to 66 months post-treatment -- showed no evidence of tumor recurrence and were free of disease without current active treatment. Eight patients remained alive.

"Brain tumors evade the immune system to survive, and the vaccine is intended to alert the immune system to the existence of cancer cells and activate a tumor-killing response. We also are targeting cells that we believe generate and perpetuate cancers," said Keith L. Black, MD, chair and professor of Cedars-Sinai's Department of Neurosurgery, director of the Cochran Brain Tumor Center and director of the Maxine Dunitz Neurosurgical Institute, where the vaccine was researched and developed. Black is the Ruth and Lawrence Harvey Chair in Neuroscience.

The vaccine's latest version, ICT-107, targets six antigens (HER2/neu, TRP-2, gp100, MAGE-1, IL13R2 and AIM-2) involved in the development of glioblastoma cells. All patient tumors had at least three of the targeted antigens; 74 percent of tumors had all six. Patients with tumors that expressed large amounts of MAGE-1, AIM-2, gp100 and HER2 had better immune responses and longer progression-free survival rates, suggesting that these antigens may be particularly vulnerable to the vaccine.

The researchers also found evidence that the vaccine attacks some brain cancer stem cells, considered the original source of tumor cells. These self-renewing cells appear to enable tumors to resist radiation and chemotherapy and even regenerate after treatment. Cancer stem cells are especially appealing targets: killing the stem cells is believed to improve the chances of destroying a tumor and preventing its recurrence.

"The correlation of clinical responses to the level of antigen expression gives us confidence in our belief that a strong immunologic response is linked to clinical outcome. This finding supports our previous finding that immune responses are correlated to survival," commented John S. Yu, MD, vice chair of the Department of Neurosurgery, director of the Brain Tumor Center, professor of neurosurgery and senior author of the article.

Three of the tumor-associated antigens (HER2/neu, TRP-2 and AIM-2) are found not only on brain tumor cells but also on brain cancer stem cells, and the researchers reported that a protein (CD133) associated with cancer stem cells was decreased or eliminated from tumors of some vaccinated patients whose glioblastomas returned after treatment.

"Previous studies showed an increase in CD133 expression in patients who underwent treatment with radiation and chemotherapy. Our findings suggest that targeting antigens that are highly expressed by cancer stem cells may be a viable strategy for treating patients who have glioblastoma," said Surasak Phuphanich, MD, director of the Neuro-Oncology Program at the Cochran Brain Tumor Center and professor of neurology with Cedars-Sinai's Department of Neurosurgery and Department of Neurology.

Phuphanich and Christopher J. Wheeler, PhD, principal investigator in the Immunology Program at the Maxine Dunitz Neurosurgical Institute and associate professor of neurosurgery, are first authors of the article.

Cedars-Sinai's first dendritic cell vaccine began Phase I experimental treatments in May 1998. With the ability of the latest version, ICT-107, to stimulate a targeted and controlled immune response established in this Phase I study, the vaccine moved into a Phase II multicenter, randomized, placebo-controlled trial in 2011. Enrollment in the Phase II trial is expected to be completed in September 2012.

Dendritic cells are the immune system's most powerful antigen-presenting cells -- those responsible for helping the immune system recognize invaders. They are derived from white blood cells taken from the patient in a routine blood draw. In the laboratory, the cells are cultured with synthetic peptides of the six antigens -- essentially training the dendritic cells to recognize the tumor antigens as targets.

When the "new" dendritic cells in the vaccine are injected under the patient's skin in the armpit, they are intended to seek and destroy lingering tumor cells. Vaccine is administered three times at two-week intervals after standard radiation and chemotherapy.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Surasak Phuphanich, Christopher J. Wheeler, Jeremy D. Rudnick, Mia Mazer, HongQian Wang, Miriam A. Nuño, Jaime E. Richardson, Xuemo Fan, Jianfei Ji, Ray M. Chu, James G. Bender, Elma S. Hawkins, Chirag G. Patil, Keith L. Black, John S. Yu. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunology, Immunotherapy, 2012; DOI: 10.1007/s00262-012-1319-0

Cite This Page:

Cedars-Sinai Medical Center. "Vaccine targets malignant brain cancer antigens, significantly lengthens survival." ScienceDaily. ScienceDaily, 15 August 2012. <www.sciencedaily.com/releases/2012/08/120815093108.htm>.
Cedars-Sinai Medical Center. (2012, August 15). Vaccine targets malignant brain cancer antigens, significantly lengthens survival. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2012/08/120815093108.htm
Cedars-Sinai Medical Center. "Vaccine targets malignant brain cancer antigens, significantly lengthens survival." ScienceDaily. www.sciencedaily.com/releases/2012/08/120815093108.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) — Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins