Featured Research

from universities, journals, and other organizations

Fighting melanoma's attraction to the brain

Date:
September 19, 2012
Source:
American Friends of Tel Aviv University
Summary:
A researcher is delving deeper into the way the brain attracts cancer cells, and his breakthrough is giving scientists new hope for better therapies.

The process of metastasis, by which cancer cells travel from a tumor site and proliferate at other sites in the body, is a serious threat to cancer patients. According to the National Cancer Institute, most recurrences of cancer are metastases rather than "new" cancers.

Virtually all types of cancer can spread to other parts of the body, including the brain. Once metastatic melanoma cells are entrenched in the brain, patients typically have only a few months to live.

Now Prof. Isaac Witz and his team at Tel Aviv University's Department of Cell Research and Immunology are delving deeper into what attracts metastatic melanoma cells to the brain, and how they survive and prosper in this environment. Their experiments have discovered that melanoma cells produce receptors for two chemokines -- a family of small proteins secreted by cells -- present in the brain tissue. These receptors may act as a homing device, drawing the cancerous cells to the brain.

"These interactions between the chemokines in the brain and the melanoma cell receptors could be potential targets for new therapies," Prof. Witz says. "With medications that suppress these molecules, you could hope to interfere with this specific migration." Published in the International Journal of Cancer, this research is supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

A dangerous attraction

Although metastasis is a well-understood process, researchers are still trying to uncover the underlying mechanisms of why cancer cells begin to migrate in the first place. It is also crucial to understand what allows them to sustain themselves, divide, and propagate once they have arrived at their new location.

To better understand metastacized melanoma cells in the brain, the researchers cultured brain tissue in the lab, then analyzed all of the materials that were expressed by the cells. They identified certain chemokine receptors in brain-metastasizing melanoma cells and corresponding chemokines in the brain tissue which could ultimately be responsible for the cancer cells' being "attracted" to the brain. If a certain chemokine is released from the brain, and the melanoma cells have the appropriate receptors, a chemical attraction will take place where the melanoma cells would be drawn to wherever the chemokine is.

Duplicating nature

The researchers have also developed a method to compare metastatic and non-metastatic cells with identical genetic backgrounds. Though they are derived from the same cancer, some of these cells become metastatic, while others do not. "This is a good way for us to concentrate on the genes that are specific to metastatic cells. Because we have these two types of cellular variants, where only one goes to the brain and metastasizes, it's an important tool" for future research, explains Prof. Witz.

The researchers have found that mice that are inoculated with non-metastatic cells do end up with melanoma cells in the brain, but they are dormant and do not generate overt metastasis. The key is to discover why these originally identical cells differ -- why the non-metastatic cells don't develop in the same way.

Understanding the process will help scientists to "duplicate what nature does, and prevent these cells from becoming metastatic," says Prof. Witz. "If there already is metastasis, it is too late -- so what we want to do is to prevent development by understanding the mechanism that keeps the non-metastatic cells dormant."


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anat Klein, Orit Sagi-Assif, Sivan Izraely, Tsipi Meshel, Metsada Pasmanik-Chor, Clara Nahmias, Pierre-Olivier Couraud, Neta Erez, Dave S.B. Hoon, Isaac P. Witz. The metastatic microenvironment: Brain-derived soluble factors alter the malignant phenotype of cutaneous and brain-metastasizing melanoma cells. International Journal of Cancer, 2012; DOI: 10.1002/ijc.27552

Cite This Page:

American Friends of Tel Aviv University. "Fighting melanoma's attraction to the brain." ScienceDaily. ScienceDaily, 19 September 2012. <www.sciencedaily.com/releases/2012/09/120919125602.htm>.
American Friends of Tel Aviv University. (2012, September 19). Fighting melanoma's attraction to the brain. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2012/09/120919125602.htm
American Friends of Tel Aviv University. "Fighting melanoma's attraction to the brain." ScienceDaily. www.sciencedaily.com/releases/2012/09/120919125602.htm (accessed April 21, 2014).

Share This



More Health & Medicine News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Breakfast Foods Are Getting Pricier

Breakfast Foods Are Getting Pricier

AP (Apr. 21, 2014) Breakfast is now being served with a side of sticker shock. The cost of morning staples like bacon, coffee and orange juice is on the rise because of global supply problems. (April 21) Video provided by AP
Powered by NewsLook.com
Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins