Featured Research

from universities, journals, and other organizations

Skip the cake? Neural processes at work during self-regulation identified

Date:
September 26, 2012
Source:
California Institute of Technology
Summary:
When making healthy choices, we often have to engage in an internal struggle. Now, scientists have identified the neural processes at work during such self-regulation -- and what determines whether you choose chocolate cake or something healthier.

Almost everyone knows the feeling: you see a delicious piece of chocolate cake on the table, but as you grab your fork, you think twice. The cake is too fattening and unhealthy, you tell yourself. Maybe you should skip dessert.

Related Articles


But the cake still beckons.

In order to make the healthy choice, we often have to engage in this kind of internal struggle. Now, scientists at the California Institute of Technology (Caltech) have identified the neural processes at work during such self-regulation -- and what determines whether you eat the cake.

"We seem to have independent systems capable of guiding our decisions, and in situations like this one, these systems may compete for control of what we do," says Cendri Hutcherson, a Caltech postdoctoral scholar who is the lead author on a new paper about these competing brain systems, which will be published in the September 26 issue of The Journal of Neuroscience.

"In many cases, these systems guide behavior in the same direction, so there's no conflict between them," she adds. "But in other cases, like the all-too-common inner fight to resist the temptation of eating the chocolate cake, they can guide behavior toward different outcomes. Furthermore, the outcome of the decision seems to depend on which of the two systems takes control of behavior."

A large body of evidence shows that people make decisions by assigning different values to the various options, says Antonio Rangel, a professor of economics and neuroscience and the senior author of the paper. To make their decisions, people select the choice with the highest value. "An important and controversial open question -- which this study was designed to address -- is whether there is a single value signal in the brain, or if there are instead multiple value signals with different properties that compete for the control of behavior."

According to the single-value hypothesis, Rangel explains, the ability to say no to the chocolate cake depends on just one system that compares values like healthiness and taste. But the multiple-value hypothesis suggests that there are different systems that process different values. The ability to turn down the cake therefore depends on whether the brain can activate the appropriate system -- the one that evaluates healthiness. If you do not want the cake, it means you place a higher value on health than on taste and your brain acts accordingly.

In the study, the researchers asked 26 volunteers to refrain from eating for four hours prior to being tested. During the experiment, a functional magnetic resonance imaging (fMRI) machine was used to measure the brain activity of the hungry participants while they decided how much they were willing to pay for different snacks, which were shown on a computer screen. The items, including foods like chips and vegetables, varied in taste and healthiness. The subjects were explicitly asked to make their choices in one of three conditions: while attempting to suppress their desire to eat the food, while attempting to increase their desire to eat the food, or while acting normally. The volunteers could do whatever they wanted to control themselves -- for example, focusing on the taste (say, to increase their desire to eat something delicious but unhealthy) or the healthiness of the item (to reduce that urge).

After a four-second period, the participants placed real bids for the right to buy the items that reflected the value they placed on the food.

The researchers found that activity in two different brain areas correlated with how much the participants said they wanted an item, as indicated by their bids. The two regions were the dorsolateral prefrontal cortex (dlPFC), which sits behind the temples, and the ventromedial prefrontal cortex (vmPFC), which is in the middle of the forehead just above the eyes.

Significantly, the two areas played very different roles in the self-regulation process. When volunteers told themselves not to want the food, the dlPFC seemed to take control; there was a stronger correlation between the signals in this area and behavior, while the signals in the vmPFC appeared to have no influence on behavior. When the volunteers encouraged themselves to want the food, however, the role of each brain region flipped. The vmPFC took control while the signals in the dlPFC appeared to have no effect.

The researchers also found that the brain's ability to switch control between these two areas was not instantaneous. It took a couple of seconds before the brain was able to fully ignore the conflicting region. For example, when a volunteer tried to suppress a craving, the vmPFC initially appeared to drive behavior. Only after a couple of seconds -- while the participant tried to rein in his or her appetite -- did the correlation between bids and vmPFC activity disappear and the dlPFC seem to take over.

"This research suggests a reason why it feels so difficult to control your behavior," Hutcherson says. "You've got these really fast signals that say, go for the tempting food. But only after you start to go for it are you able to catch yourself and say, no, I don't want this."

Previous work in Rangel's lab showed that when dieters made similar food choices, their decisions were controlled only by the vmPFC. The researchers speculate that because dieters are more accustomed to self-control, their brains do not show the neural struggle seen in the new study. If that is the case, then it may be possible that people can improve their self-control with more practice.

In addition to Hutcherson and Rangel, the other authors on the Journal of Neuroscience paper are Hilke Plassmann from the Ιcole Normale Supιrieure in France and James Gross of Stanford. The title of the paper is "Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems." This research was funded by grants from the National Science Foundation, the National Institutes of Health, and the Gordon and Betty Moore Foundation.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Marcus Woo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cendri A. Hutcherson, Hilke Plassmann, James J. Gross, and Antonio Rangel. Cognitive Regulation during Decision Making Shifts Behavioral Control between Ventromedial and Dorsolateral Prefrontal Value Systems. The Journal of Neuroscience, 26 September 2012, 32(39):13543-13554 DOI: 10.1523/JNEUROSCI.6387-11.2012

Cite This Page:

California Institute of Technology. "Skip the cake? Neural processes at work during self-regulation identified." ScienceDaily. ScienceDaily, 26 September 2012. <www.sciencedaily.com/releases/2012/09/120926133233.htm>.
California Institute of Technology. (2012, September 26). Skip the cake? Neural processes at work during self-regulation identified. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2012/09/120926133233.htm
California Institute of Technology. "Skip the cake? Neural processes at work during self-regulation identified." ScienceDaily. www.sciencedaily.com/releases/2012/09/120926133233.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids React to Lammily, The Realistic Barbie Alternative

Kids React to Lammily, The Realistic Barbie Alternative

Buzz60 (Nov. 19, 2014) — Artist Nickolay Lamm's Kickstarter-funded Lammily doll, based on his 'What Would Barbie Look Like as a Real Woman' project, is finally available to buy. Jen Markham explains how the doll's realistic proportions are going over with a test group of second-graders who are used to the impossible measurements of Barbie dolls. Video provided by Buzz60
Powered by NewsLook.com
Trans-Fat Foods Now Linked To Poor Memory

Trans-Fat Foods Now Linked To Poor Memory

Newsy (Nov. 19, 2014) — A study presented at the American Heart Association Scientific Sessions shows a link between diets high in trans fats and decreased memory recall. Video provided by Newsy
Powered by NewsLook.com
Creating Lifelong Love of Science and Math

Creating Lifelong Love of Science and Math

AP (Nov. 18, 2014) — Kelly Mathews is a new mom on a mission to get girls interested in science, technology, engineering and math, and it starts with her own daughter. The Girl Scouts are doing their part, too, by promoting S.T.E.M. through badges and activities. (Nov. 18) Video provided by AP
Powered by NewsLook.com
3D Fun Improves Child Therapy in Poland

3D Fun Improves Child Therapy in Poland

Reuters - Innovations Video Online (Nov. 17, 2014) — Scientists in Poland are helping children with autism and Down's Syndrome better focus on therapeutic exercises by taking them out of their real world environment and into a specially-designed 3D cave in which their imagination can flourish. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins