Featured Research

from universities, journals, and other organizations

Learning to overcome fear is difficult for teens

Date:
September 27, 2012
Source:
NewYork-Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College
Summary:
A new study shows that adolescents' reactions to threat remain high even when the danger is no longer present. According to researchers, once a teenager's brain is triggered by a threat, the ability to suppress an emotional response to the threat is diminished which may explain the peak in anxiety and stress-related disorders during this developmental period.

A new study by Weill Cornell Medical College researchers shows that adolescents' reactions to threat remain high even when the danger is no longer present. According to researchers, once a teenager's brain is triggered by a threat, the ability to suppress an emotional response to the threat is diminished which may explain the peak in anxiety and stress-related disorders during this developmental period.

The study, published Sept. 17 in the early online edition of the Proceedings of the National Academy of Sciences (PNAS), is the first to decode fear acquisition and fear "extinction learning," down to the synaptic level in the brains of mice, which mirror human neuronal networks. Also, through human and rodent experiments, the study finds that acquired fear can be difficult to extinguish in some adolescents. By contrast, the study shows that adults and children do not have the same trouble learning when a threat is no longer present.

"This is the first study to show, in an experiment, that adolescent humans have diminished fear extinction learning," says the study's lead author, Dr. Siobhan S. Pattwell, a postdoctoral fellow at the Sackler Institute for Developmental Psychobiology at Weill Cornell. "Our findings are important because they might explain why epidemiologists have found that anxiety disorders seem to spike during adolescence or just before adolescence. It is estimated that over 75 percent of adults with fear-related disorders can trace the roots of their anxiety to earlier ages."

The study findings suggest there is altered plasticity in the prefrontal cortex of the brain during adolescence, with its inability to overcome fear, says the study's senior co-investigator, Dr. Francis Lee, professor of pharmacology and psychiatry at Weill Cornell Medical College, and an attending psychiatrist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

"This study is the first to show activity, at the synaptic level, for both fear acquisition and fear extinction -- and we find that while these areas function well in both younger and older mice, neurons involved in fear extinction are not as active in adolescent mice," says Dr. Lee. "If adolescents have a more difficult time learning that something that once frightened them is no longer a danger, then it is clear that the standard desensitization techniques from fear may not work on them. This new knowledge about the teenage brain's synaptic connections not responding optimally will help clinicians understand that the brain region used in fear extinction may not be as efficient during this sensitive developmental period in adolescents."

Adolescent Mice Never Lose Their Fear Response

Fear learning is a highly-adaptive, evolutionarily conserved process that allows one to respond appropriately to cues associated with danger. In the case of psychiatric disorders, however, fear may persist long after a threat has passed, and this unremitting and often debilitating form of fear is a core component of many anxiety disorders, including post-traumatic stress disorders (PTSD).

Existing treatments, such as exposure therapy, are designed to expose an individual slowly to the cues associated with a perceived threat. This technique is used for a variety of fears, from wartime PTSD to fear of flying, as well as serious adolescent anxiety about school, says Dr. Lee, who treats, among others, patients with PTSD acquired during the World Trade Center collapse on September 11, 2001.

Anxiety disorders are increasingly being diagnosed in children and adolescents, but the success rate of fear extinction-based exposure therapies are currently not known in this population. This study aimed to discover if they could be effective -- and why or why not.

The human experiment was conducted at the Sackler Institute for Developmental Psychobiology at Weill Cornell in collaboration with its director, Dr. B.J. Casey, a study senior co-investigator, who is the Sackler Professor of Developmental Psychobiology and professor of psychology in psychiatry at Weill Cornell. In the experiment, a group of volunteers -- children, adolescents and adults -- wore headphones and sweat meters and were asked to look at a computer screen with a sequence of blue or yellow square images. One of the squares was paired with a really unpleasant sound. For example, 50 percent of the time the blue square would set off the noise.

If the participants acquired a fear of the noise, they showed increased sweat when viewing the image that was paired with it, says Dr. Pattwell. The same group was brought back the next day, and again viewed a sequence of blue or yellow squares, but this time there was no associated noise. "But teenagers didn't decrease their fear response, and maintained their fear throughout subsequent trials when no noise was played," she says. However, the researchers documented that, unlike the teens participating in this study aged 12-17, both children and adults quickly learned that neither square was linked to a noxious sound, and this understanding rapidly decreased their fear response.

The mouse experiment, which used standard fear conditioning common in these types of animal studies, obtained similar findings. Adolescent mice (29 days old) did not decrease their fear response to stimuli that no longer existed, but younger and older mice did. Interestingly, the adolescent mice never lost their fear response as they aged.

The research team then monitored the brains of mice as they participated in the experiment. With the assistance of study senior co-investigator, Dr. Ipe Ninan, an electrophysiologist at NYU Langone Medical Center who is an assistant professor of psychiatry, the research team found that the prelimbic region in the prefrontal cortex, the brain region that processes emotion, is activated during acquisition of fear, and the infralimbic prefrontal cortex is used to extinguish this fear association. While other groups have suggested that the prefrontal cortex plays a role in extinction, no one has shown that this activity is at the level of the synapse -- the connections between the neurons.

"In young and old mice, we see plasticity, which is activity in the infralimbic cortex, which helps the animals decrease their fear response when a threat no longer applies," says Dr. Pattwell. "Interestingly, we didn't witness similar activity in adolescent mice."

According to researchers there is much more to explore about the fear response and its decoding in human adolescents, such as whether genes contribute to susceptibility to altered fear learning, and most importantly, what can be done to help the adolescent population overcome fear.

"We need to investigate personalized approaches to treatment of these fear and anxiety disorders in teens," says Dr. Lee. "It is essential that we find a way to help teenagers become more resilient to the fear they experience during adolescence to prevent it from leading to a lifetime of anxiety and depression."

The research was supported by the Sackler Institute, the DeWitt-Wallace Fund of the New York Community Trust, the Irma T. Hirschl/Monique Weill-Caulier Trust, the International Mental Health Research Organization, the Burroughs Wellcome Foundation, the Pritzker Consortium, National Institutes of Health Grants and a Swiss National Science Foundation Grant.

Weill Cornell co-authors are Dr. Stιphanie Duhoux, Dr. Catherine A. Hartley, David C. Johnson, Dr. Deqiang Jing, Mark D. Elliott, Erika J. Ruberry, Alisa Powers, Natasha Mehta, Rui R. Yang, Dr. Fatima Soliman, and Dr. Charles E. Glatt.


Story Source:

The above story is based on materials provided by NewYork-Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. S. Pattwell, S. Duhoux, C. A. Hartley, D. C. Johnson, D. Jing, M. D. Elliott, E. J. Ruberry, A. Powers, N. Mehta, R. R. Yang, F. Soliman, C. E. Glatt, B. J. Casey, I. Ninan, F. S. Lee. Altered fear learning across development in both mouse and human. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1206834109

Cite This Page:

NewYork-Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College. "Learning to overcome fear is difficult for teens." ScienceDaily. ScienceDaily, 27 September 2012. <www.sciencedaily.com/releases/2012/09/120927130614.htm>.
NewYork-Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College. (2012, September 27). Learning to overcome fear is difficult for teens. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/09/120927130614.htm
NewYork-Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College. "Learning to overcome fear is difficult for teens." ScienceDaily. www.sciencedaily.com/releases/2012/09/120927130614.htm (accessed September 1, 2014).

Share This




More Mind & Brain News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) — New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) — Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) — A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins