Featured Research

from universities, journals, and other organizations

Novel MRI technique could reduce breast biopsies

Date:
October 2, 2012
Source:
Radiological Society of North America
Summary:
Water diffusion measurements with MRI could decrease false-positive breast cancer results and reduce preventable biopsies, according to a new study.

Water diffusion measurements with MRI could decrease false-positive breast cancer results and reduce preventable biopsies, according to a new study published online in the journal Radiology. Researchers said the technique also could improve patient management by differentiating high-risk lesions requiring additional workup from other non-malignant subtypes.

Dynamic contrast-enhanced MRI (DCE-MRI) has emerged in recent years as a useful tool in breast cancer detection and staging. One of its primary limitations is a substantial number of false-positive findings that require biopsies.

"Many benign lesions demonstrate enhancement on DCE-MRI," said Savannah C. Partridge, Ph.D., research associate professor at the University of Washington, Seattle Cancer Care Alliance. "We need another means for differentiating benign lesions from malignancies."

One possible solution is diffusion-weighted imaging (DWI), an MRI technique that calculates the apparent diffusion coefficient (ADC) -- a measure of how water moves through tissue.

"DWI has been used mostly in neurological applications, but it's been studied more recently in breast imaging," Dr. Partridge said. "It only adds a couple of minutes to the MRI exam and does not require additional contrast or any extra hardware."

Research has shown that DWI is a promising tool for distinguishing between benign and malignant breast lesions. Normal breast tissue has a high ADC because water moves through it relatively freely, while most cancers have a lower ADC because their cells are more tightly packed and restrict water motion. However, significant overlap exists between the ADC values of non-malignant lesions and breast malignancies, and little is known about the ADC values of specific subtypes of non-malignant lesions.

For the new study, Dr. Partridge and colleagues evaluated the DWI characteristics of non-malignant lesions in 165 women. Based on ADC values above a previously determined diagnostic threshold, DWI successfully characterized 46 percent of non-malignant breast lesions identified as false-positive findings on DCE-MRI as benign.

"We were excited to see the number of false positives that could be reduced through this approach," Dr. Partridge said. "DWI gives us extra microstructural information to distinguish among lesions. We can use ADC values to draw a cutoff above which we might not need to do a biopsy."

The research team is planning a multicenter trial to validate the findings and determine how to best to incorporate ADC measures into clinical breast MRI interpretations.

"We are very motivated to translate this promising technology to a clinically useful breast imaging tool," Dr. Partridge said.


Story Source:

The above story is based on materials provided by Radiological Society of North America. Note: Materials may be edited for content and length.


Cite This Page:

Radiological Society of North America. "Novel MRI technique could reduce breast biopsies." ScienceDaily. ScienceDaily, 2 October 2012. <www.sciencedaily.com/releases/2012/10/121002092718.htm>.
Radiological Society of North America. (2012, October 2). Novel MRI technique could reduce breast biopsies. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2012/10/121002092718.htm
Radiological Society of North America. "Novel MRI technique could reduce breast biopsies." ScienceDaily. www.sciencedaily.com/releases/2012/10/121002092718.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins