Featured Research

from universities, journals, and other organizations

Engineers invent new device that could increase Internet download speeds

Date:
October 2, 2012
Source:
University of Minnesota
Summary:
Scientists and engineers have invented a unique microscale optical device that could greatly increase the speed of downloading information online and reduce the cost of Internet transmission. The device uses the force generated by light to flop a mechanical switch of light on and off at a very high speed. This development could lead to advances in computation and signal processing using light instead of electrical current.

A team of scientists and engineers at the University of Minnesota has invented a unique microscale optical device that could greatly increase the speed of downloading information online and reduce the cost of Internet transmission.

Related Articles


The device uses the force generated by light to flop a mechanical switch of light on and off at a very high speed. This development could lead to advances in computation and signal processing using light instead of electrical current with higher performance and lower power consumption.

The research results were published October 2 in the online journal Nature Communications.

"This device is similar to electromechanical relays but operates completely with light," said Mo Li, an assistant professor of electrical and computer engineering in the University of Minnesota's College of Science and Engineering.

The new study is based on a previous discovery by Li and collaborators in 2008 where they found that nanoscale light conduits can be used to generate a strong enough optical force with light to mechanically move the optical waveguide (channel of information that carries light). In the new device, the researchers found that this force of light is so strong that the mechanical property of the device can be dominated completely by the optical effect rather than its own mechanical structure. The effect is amplified to control additional colored light signals at a much higher power level.

"This is the first time that this novel optomechanical effect is used to amplify optical signals without converting them into electrical ones," Li said.

Glass optical fibers carry many communication channels using different colors of light assigned to different channels. In optical cables, these different-colored light channels do not interfere with each other. This non-interference characteristic ensures the efficiency of a single optical fiber to transmit more information over very long distances. But this advantage also harbors a disadvantage. When considering computation and signal processing, optical devices could not allow the various channels of information to control each other easily…until now.

The researchers' new device has two optical waveguides, each carrying an optical signal. Placed between the waveguides is an optical resonator in the shape of a microscale donut (like a mini-Hadron collider.) In the optical resonator, light can circulate hundreds of times gaining intensity.

Using this resonance effect, the optical signal in the first waveguide is significantly enhanced in the resonator and generates a very strong optical force on the second waveguide. The second waveguide is released from the supporting material so that it moves in oscillation, like a tuning fork, when the force is applied on it. This mechanical motion of the waveguide alters the transmission of the optical signal. Because the power of the second optical signal can be many times higher than the control signal, the device functions like a mechanical relay to amplify the input signal.

Currently, the new optical relay device operates one million times per second. Researchers expect to improve it to several billion times per second. The mechanical motion of the current device is sufficiently fast to connect radio-frequency devices directly with fiber optics for broadband communication.

Li's team at University of Minnesota includes graduate students Huan Li, Yu Chen and Semere Tadesse and former postdoctoral fellow Jong Noh. Funding support of the project came from the University of Minnesota College of Science and Engineering and the Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Journal Reference:

  1. Huan Li, Yu Chen, Jong Noh, Semere Tadesse, Mo Li. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Nature Communications, 2012; 3: 1091 DOI: 10.1038/ncomms2103

Cite This Page:

University of Minnesota. "Engineers invent new device that could increase Internet download speeds." ScienceDaily. ScienceDaily, 2 October 2012. <www.sciencedaily.com/releases/2012/10/121002145754.htm>.
University of Minnesota. (2012, October 2). Engineers invent new device that could increase Internet download speeds. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/10/121002145754.htm
University of Minnesota. "Engineers invent new device that could increase Internet download speeds." ScienceDaily. www.sciencedaily.com/releases/2012/10/121002145754.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins