Featured Research

from universities, journals, and other organizations

Nanoparticles against aging

Date:
October 3, 2012
Source:
Asociación RUVID
Summary:
Scientists have developed an intelligent nanodevice that lays the foundations for the future development of new therapies against aging. The device consists of nanoparticles that can selectively release drugs in aged human cells. Its potential future use ranges from the treatment of diseases involving tissue or cellular degeneration such as cancer, Alzheimer's or Parkinson's, among others, to accelerated aging disorders (progeria).

A team of Spanish scientists has developed an intelligent nanodevice that lays the foundations for the future development of new therapies against aging. The device consists of nanoparticles that can selectively release drugs in aged human cells. Its potential future use ranges from the treatment of diseases involving tissue or cellular degeneration such as cancer, Alzheimer's or Parkinson's, among others, to accelerated aging disorders (progeria).

Related Articles


This research has been carried out by the Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Mixed Unit Universitat Politècnica de València -- Universitat de València; the Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), the Instituto de Investigaciones Biomédicas (CSIC/UAM), the CIBER of Rare Diseases (CIBERER) and CIBER on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). The work has been published in the journal Angewandte Chemie.

"The nanodevice that we have developed consists of mesoporous nanoparticles with a galactooligosaccharide outer surface that prevents the release of the load and that only selectively opens in degenerative phase cells or senescent cells. The proof of concept demonstrates for the first time that selected chemicals can be released in these cells and not in others," says Ramón Martínez Máñez, researcher at the IDN Centre -- Universitat Politècnica de València and CIBER-BBN member.

José Ramón Murguía, a researcher at the Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) and also a CIBER-BBN member, explains that senescence is a physiological process of the body to eliminate aged cells or ones with alterations that may compromise their viability. "When we are young senescence mechanisms prevent, for example, the appearance of tumors, the problem is that with age senescent cells accumulate in organs and tissues, disrupting their proper functioning. The elimination of these cells would slow down the appearance of diseases associated with aging. Our work shows that we can develop a targeted therapy against these cells," says Murguía.

The researchers have evaluated the utility of the new nanodevices in primary cell cultures derived of patients with accelerated aging syndrome dyskeratosis congenita (DC). Such cultures show a high percentage of senescence characterized by elevated levels of beta-galactosidase activity, an enzyme characteristic of senescent state. "The aging cells overexpress this enzyme so we have designed nanoparticles that open when detected and release their contents in order to eliminate senescent cells, prevent deterioration or even reactivate for their rejuvenation," explains Murguía. "There are a number of diseases associated with premature aging of tissues, many of which affect very young patients and for whom there is no therapeutic alternative, as in the case of DC or aplastic anemia. Other diseases affect adults, as idiopathic pulmonary fibrosis or liver cirrhosis. These nanoparticles represent a unique opportunity to selectively deliver therapeutic compounds to affected tissues and rescue their viability and functionality" explains Rosario Perona, researcher at the Instituto de Investigaciones Biomédicas (CSIC/UAM) and CIBERER member.

The next step of this research is to test the devise with therapeutic agents and validate it in animal models. "As far as we know this is the first time that a nanotherapy for senescent cells has been described. Although there is still far to go from these results to the possible elimination of senescent cells or rejuvenation therapies, we believe that our research may open new paths for developing therapies for the treatment of age-related diseases," says Ramón Martínez Máñez.

Cosmetic therapies

According to the researchers, who designed the nanodevice can also be useful for developing therapies topical cosmetic care and beautification of the skin and hair, as anti-wrinkle or anti-aging, and radiation shielding UV or to address alopecia, all associated with the accumulation of senescent cells, conclude Martinez Máñez and Murguia.


Story Source:

The above story is based on materials provided by Asociación RUVID. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alessandro Agostini, Laura Mondragón, Andrea Bernardos, Ramón Martínez-Máñez, M. Dolores Marcos, Félix Sancenón, Juan Soto, Ana Costero, Cristina Manguan-García, Rosario Perona, Marta Moreno-Torres, Rafael Aparicio-Sanchis, José Ramón Murguía. Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 2012; DOI: 10.1002/anie.201204663

Cite This Page:

Asociación RUVID. "Nanoparticles against aging." ScienceDaily. ScienceDaily, 3 October 2012. <www.sciencedaily.com/releases/2012/10/121003082728.htm>.
Asociación RUVID. (2012, October 3). Nanoparticles against aging. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/10/121003082728.htm
Asociación RUVID. "Nanoparticles against aging." ScienceDaily. www.sciencedaily.com/releases/2012/10/121003082728.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) — A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins