Featured Research

from universities, journals, and other organizations

'Humanized' mice advance study of rheumatoid arthritis; Human stell cells implanted in mice improve chances of better therapies

Date:
October 4, 2012
Source:
Northwestern University
Summary:
Researchers have developed the first animal model that duplicates the human response in rheumatoid arthritis (RA), an important step that may enable scientists to discover better medicines to treat the disease. This is the first time human stem cells have been transplanted into mice in order to find RA treatments.

Researchers at Northwestern University Feinberg School of Medicine have developed the first animal model that duplicates the human response in rheumatoid arthritis (RA), an important step that may enable scientists to discover better medicines to treat the disease.

Related Articles


Corresponding and senior author Harris Perlman, associate professor of rheumatology at Feinberg, introduced his team's new prototype mouse model in a recent online issue of the Journal of Translational Medicine.

"This is the first time human stem cells have been transplanted into mice in order to find RA treatments," Perlman said. "We believe this will improve drug discovery because the reactions we observed were authentic human reactions."

Until now, scientists have relied on the common scientific method of using specially bred mice to find drugs to control RA. However, human and mouse immune systems differ dramatically, so studying RA in these mice does not give an accurate representation of how the disease functions in humans. In some cases, RA drugs that seemed promising based on results in mice failed in human clinical trials.

Mice implanted with human stem cells have been used before mainly to study infectious disease.

The Northwestern team injected day-old mice with human stem cells from umbilical cord blood, including white blood cells, which regulate immunity. Then, RA was introduced in the mice and suppressed with Enbrelฎ, a common first-line drug for joint inflammation in humans. This offered evidence that their immune systems were indeed replicating human defenses.

Scientists seek mouse models that mimic RA in humans in order to learn how the complex disease operates. In the last decade, researchers and physicians have found many subtypes of RA that originate on the molecular level and are each produced by different pathways in the body.

A debilitating disease, rheumatoid arthritis is a chronic autoimmune disorder characterized by persistent inflammation around joint areas, predominantly in the wrist and fingers. The disease causes pain, swelling, stiffness and loss of function and can result in tissue destruction. Approximately 1.3 million people have the disease.

Onset of RA usually begins between ages 25 to 55, but recent studies reveal that the disease actually begins several years before symptoms appear. This has broadened the focus to create drugs that prevent RA or at least enable early diagnosis instead of trying to reduce symptoms once it is further along and difficult to control.

This is the second mouse model Perlman has developed to help discover better rheumatoid arthritis therapies. Earlier this year, he introduced a mouse model that develops RA and is predisposed to atherosclerosis, or hardening of the arteries, a common RA complication in humans.

Perlman called this first humanized mouse model "the tip of the iceberg" in terms of how it will help improve RA treatment. He added that future studies will involve harvesting stem cells in cord blood from mothers who have RA, so researchers can work with immune cells containing the disease's genetic makeup. Since the disease is influenced by genetics, the maternal immune cells will be transplanted in mice to pinpoint preventive treatments.

Coauthors of the study at Northwestern include Alexander Misharin, research assistant professor, Shawn Rose, post-doctoral fellow, Angelica Gierut, post-doctoral fellow. Other coauthors include Kenneth Haines III, associate professor of pathology at Yale School of Medicine, and Richard Hotchkiss, professor of anesthesiology, medicine and surgery at Washington University.

The study was funded by the following National Institutes of Health grants: AR07611, AR050250 and AR054796 from the National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH Loan Repayment grants GM044118 and 055194 from the National Institute of General Medical Sciences; AI092490 from the National Institute for Allergy and Infectious Disease, HL108795 from the National Heart Lung and Blood Institute.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander V Misharin, Kenneth Haines, Shawn Rose, Angelica Gierut, Richard S Hotchkiss, Harris Perlman. Development of a new humanized mouse model to study acute inflammatory arthritis. Journal of Translational Medicine, 2012; 10 (1): 190 DOI: 10.1186/1479-5876-10-190

Cite This Page:

Northwestern University. "'Humanized' mice advance study of rheumatoid arthritis; Human stell cells implanted in mice improve chances of better therapies." ScienceDaily. ScienceDaily, 4 October 2012. <www.sciencedaily.com/releases/2012/10/121004093510.htm>.
Northwestern University. (2012, October 4). 'Humanized' mice advance study of rheumatoid arthritis; Human stell cells implanted in mice improve chances of better therapies. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/10/121004093510.htm
Northwestern University. "'Humanized' mice advance study of rheumatoid arthritis; Human stell cells implanted in mice improve chances of better therapies." ScienceDaily. www.sciencedaily.com/releases/2012/10/121004093510.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins