Featured Research

from universities, journals, and other organizations

Engineers test rotor landing for capsules

Date:
October 4, 2012
Source:
NASA
Summary:
A team of researchers brought a pair of scale model space capsules to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to try out a rotor system that could be used in place of parachutes on returning spacecraft.

An artist concept shows a capsule flying back to Earth with a rotor blade system instead of parachutes. The rotors deploy from the side of the capsule once the fall has slowed to subsonic speeds.
Credit: NASA

A team of researchers brought a pair of scale model space capsules to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to try out a rotor system that could be used in place of parachutes on returning spacecraft.

The design would give a capsule the stability and control of a helicopter, but would not be powered. Instead, the wind passing over the rotors as the capsule descends would make the blades turn, a process called auto-rotation that has been proven repeatedly on helicopters but never tried on spacecraft.

"The purpose of the testing we're doing here is to study how to get the rotor starting to spin," said Jeff Hagen, an engineer at Johnson Space Center in Houston. "We're trying to build as much of that story as we can."

With team members spread out at different levels of the VAB, Jim Meehan stood at the 16th level of the cavernous VAB, about halfway up to where the two-pound model capsule hung on a line 480 feet above the concrete floor. Holding a helicopter radio-control unit, he remotely changed the rotors' pitch and slowed the fall four times as the unpowered craft landed on a stack of foam.

"It's like running four separate tests in one drop," said Meehan, an engineer at Marshall Space Flight Center in Huntsville, Ala.

The intent is to give real spacecraft a soft landing with enough control that they could touch down anywhere in the world, whether it be a runway or the top of a building. In other words, wherever a helicopter could land, a spacecraft could land, too.

"You can land gently and you can land where you want, you don't have to land out in the ocean," Meehan said. "Compared to a parachute, you get a soft landing and you get a targeted landing."

The rotor concept also fits nicely with spent rocket boosters, Hagen said. Instead of throwing away the stage and its valuable engines, rotors could be built into the booster frame and unfurled as the stage descends to Earth. Just as with the capsule, the stage would be controllable the whole way down and would land softly to save the all-important engines.

One might think the blades would fold up like an umbrella on a windy day the moment they touch the airstream around the capsule, but Hagen said the airflow around the hinges would be balanced, so the blades would hold strong.

The researchers note that their work is about incorporating different elements together into something that is innovative.

"A hundred years ago, there were cameras and there were phones and there were wireless devices to send Morse code and they were all separate technologies on their own," said Les Boatright, an engineer at Kennedy. "Now you have a telephone that does all three of those things and it's a merger of technology. Well, this is taking the capsule entry technology and helicopter rotor technology and merging those in an innovative way to make something that didn't exist before out of two things that did exist before."

The development team also notes that some bombs have fins that flick open safely at high speed. The returning spacecraft could use a mechanism similar to the fins, with the difference being that the capsule's blades would start spinning almost immediately after opening. Control fins would open on the side of the capsule, too, to keep it from revolving with the blades.

According to the engineers, the testing is extremely simple compared to the high-tech evaluations that must be done before such an experimental system could be flown into space, but the analysis is critical to moving through the early phases of development to convince people it's an idea worth pursuing.

The idea is not all that new. In fact, NASA researched the concept for the Apollo capsules but opted for the parachute return for the sake of shortening development time during the moon race.

Testing of the concept will get more demanding over time, including the possibility of hauling a roto-capsule miles into the sky on a high-altitude balloon for release. And before rotors are entrusted with the lives of astronauts, designers expect to try them out on a small capsule returning fragile science samples from the International Space Station.

For that task, which at this point cannot be done by another spacecraft since the retirement of the space shuttle, the roto-capsule could find a successful niche pretty quickly, researchers said.

"That's kind of a big leap from something that's a small test article to something that's on a manned system, but in between you could have something that's a small-scale sample return that's cargo only," Hagen said.


Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.


Cite This Page:

NASA. "Engineers test rotor landing for capsules." ScienceDaily. ScienceDaily, 4 October 2012. <www.sciencedaily.com/releases/2012/10/121004122057.htm>.
NASA. (2012, October 4). Engineers test rotor landing for capsules. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/10/121004122057.htm
NASA. "Engineers test rotor landing for capsules." ScienceDaily. www.sciencedaily.com/releases/2012/10/121004122057.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins