Featured Research

from universities, journals, and other organizations

Treating vascular disorders with a cell-based strategy

Date:
October 18, 2012
Source:
Cell Press
Summary:
A new approach for generating large numbers of circulatory system cells, known as vascular endothelial cells (VECs), from human amniotic-fluid-derived cells is reported in a new study. The strategy, which shows promise in mice, opens the door to establishing a vast inventory of VECs for promoting organ regeneration and treating diverse vascular disorders.

A new approach for generating large numbers of circulatory system cells, known as vascular endothelial cells (VECs), from human amniotic-fluid-derived cells (ACs) is reported in a study published by Cell Press October 18th in the journal Cell. The strategy, which shows promise in mice, opens the door to establishing a vast inventory of VECs for promoting organ regeneration and treating diverse vascular disorders.

"Currently, there is no treatment available for a broad range of patients with vascular diseases, including patients who have suffered heart attack, stroke, lung diseases, trauma, emphysema, or even diabetes and neurological disorders," says senior study author Shahin Rafii of Weill Cornell Medical College. "Replacing injured or dysfunctional endothelial cells with normal cultured endothelial cells could potentially provide for a novel therapy to treat these diseases that afflict millions of patients worldwide."

VECs line the entire circulatory system, including the heart and blood vessels, and they help to control blood pressure, promote the formation of new blood vessels, and support the regeneration and repair of injured organs. A wide range of vascular diseases stem from dysfunctions in VECs, so generating healthy cells for transplantation in patients would represent an attractive treatment strategy. But past stem cell strategies have fallen short: VECs derived from stem cells are unstable and tend to convert to nonvascular cells, and they do not increase rapidly in number, limiting their potential for clinical use.

To overcome these limitations, Rafii and his team developed a safe approach for producing a large number of stable VECs from amniotic cells, which are extracted during routine amniocentesis procedures and thus represent a steady source of cells. To reprogram amniotic cells into mature and functional VECs, called rAC-VECs, the researchers turned specific genes on and off using members of the E-twenty-six family of transcription factors -- proteins that bind DNA and are important for VEC development.

The rAC-VECs resembled human adult VECs in that they expressed the normal set of vascular-specific genes. When rAC-VECs were transplanted into the regenerating livers of mice, they formed stable, normal, and functional blood vessels. "This major breakthrough will allow the use of endothelial cells for the treatment of numerous vascular disorders and may benefit a myriad of patients," Rafii says.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael Ginsberg, Daylon James, Bi-Sen Ding, Daniel Nolan, Fuqiang Geng, JasonM. Butler, William Schachterle, VenkatR. Pulijaal, Susan Mathew, StephenT. Chasen, Jenny Xiang, Zev Rosenwaks, Koji Shido, Olivier Elemento, SinaY. Rabbany, Shahin Rafii. Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression. Cell, 2012; DOI: 10.1016/j.cell.2012.09.032

Cite This Page:

Cell Press. "Treating vascular disorders with a cell-based strategy." ScienceDaily. ScienceDaily, 18 October 2012. <www.sciencedaily.com/releases/2012/10/121018123044.htm>.
Cell Press. (2012, October 18). Treating vascular disorders with a cell-based strategy. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2012/10/121018123044.htm
Cell Press. "Treating vascular disorders with a cell-based strategy." ScienceDaily. www.sciencedaily.com/releases/2012/10/121018123044.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins