Featured Research

from universities, journals, and other organizations

Genetic basis of cardiac, craniofacial birth defects identified

Date:
October 29, 2012
Source:
Oregon State University
Summary:
Researchers have made important advances in the rapidly-expanding field of “regenerative medicine,” outlining for the first time connections in genetic regulation that normally prevent birth defects in heart and facial muscles. This basic research will provide a road map to ultimately allow scientists to grow the cell types needed to repair such defects, from stem cells that can be generated from a person’s own body.

Embryonic brain. In this cross section of the embryonic brain of a mouse, each color represents the expression of a transcription factor in a specific head muscle.
Credit: Image courtesy of Oregon State University

A group of researchers in Israel, the United States and other nations have made important advances in the rapidly-expanding field of "regenerative medicine," outlining for the first time connections in genetic regulation that normally prevent birth defects in heart and facial muscles.

Some of these problems are surprisingly common -- about 1 percent of all people have a congenital heart defect. This basic research will provide a road map to ultimately allow scientists to grow the cell types needed to repair such defects, from stem cells that can be generated from a person's own body.

The findings were published online October 29 in the Proceedings of the National Academy of Sciences.

"Advances in regenerative medicine and developmental biology can now happen because we no longer require human embryos to generate stem cells," said Chrissa Kioussi, a co-author on the study and associate professor in the College of Pharmacy at Oregon State University. "The Nobel Prize this year was awarded to people who discovered how to make stem cells from adult biopsies."

Patient-derived stem cells can in principle be turned into any needed cell type, Kioussi said. The key is understanding the exact regulatory process than tells cells what type they are supposed to turn into, she said, such as a cell on the outside of the left ventricle of the heart.

"Once we understand these genetic controls in sufficient detail, we can not only turn a skin cell into a stem cell, but also turn that stem cell into the type needed for the patient to recover," Kioussi said. "We may eventually be able to grow replacement organs from the patient's cells."

In this study, researchers identified four specific "transcription factor" genes that control processes related to heart and head muscle formation. When there are defects in this process, the result can be death or a range of debilitating problems, from cleft palate to facial malformations and defective heart valves.

"There are about 20,000 genes in the human genome, but only 2,000 of the genes describe transcription factors," Kioussi said. "These transcription factors control the output of genes, the genetic machinery. They collectively determine which of the 20,000 possible molecular machines is actually deployed in each particular cell type."

Scientists have found that these transcription factors don't work alone to define cell types in mammalian development -- they function in small, self-stabilizing combinations of at least two or three.

The process moves rapidly after conception, and within one month most of the cells in the body "know" their cell type, based on the precise combination of transcription factors produced within them. When researchers understand how these stable transcription factor combinations get generated, they will know how to artificially generate these combinations in stem cells to convert them into the needed cell types.

Mammalian embryonic development is a process of self construction, a series of transitions of "temporary" cell types on the way to adult cell types. A fertilized egg is essentially a stem cell with the potential to become any other cell type. At each intermediate stage, the "temporary" cell types become more restricted in what they can become, until they ultimately achieve and maintain the adult type.

"In this work and in regenerative medicine, we care a great deal about all of these steps of cell differentiation," Kioussi said. "If you know all the steps it takes to get from here to there, you can identify what went wrong and find ways to fix it. This is being done already with some disease problems, and this work will move us closer to being able to repair heart and craniofacial defects."

The task is complex, Kioussi said, but very possible. Although there are 100 trillion cells in the human body, there are only about 100 adult cell types. Understanding and influencing the genetic specification of those cell types is possible and will probably revolutionize the treatment of many defects and diseases, Kioussi said.

This work was supported by the European Research Council, the Israel Science Foundation, the U.S. National Institutes of Health, and other agencies. The lead author was Eldad Tzahor at the Weizman Institute of Science in Israel, and other collaborators were from universities and agencies in the United Kingdom, India and Spain.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Itamar Harel, Yoshiro Maezawa, Roi Avraham, Ariel Rinon, Hsiao-Yen Ma, Joe W. Cross, Noam Leviatan, Julius Hegesh, Achira Roy, Jasmine Jacob-Hirsch, Gideon Rechavi, Jaime Carvajal, Shubha Tole, Chrissa Kioussi, Susan Quaggin, and Eldad Tzahor. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. PNAS, October 29, 2012 DOI: 10.1073/pnas.1208690109

Cite This Page:

Oregon State University. "Genetic basis of cardiac, craniofacial birth defects identified." ScienceDaily. ScienceDaily, 29 October 2012. <www.sciencedaily.com/releases/2012/10/121029154251.htm>.
Oregon State University. (2012, October 29). Genetic basis of cardiac, craniofacial birth defects identified. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/10/121029154251.htm
Oregon State University. "Genetic basis of cardiac, craniofacial birth defects identified." ScienceDaily. www.sciencedaily.com/releases/2012/10/121029154251.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
More People Diagnosed With TB In 2013, But There's Good News

More People Diagnosed With TB In 2013, But There's Good News

Newsy (Oct. 22, 2014) The World Health Organizations says TB numbers rose in 2013, but it's partly due to better detection and more survivors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins