Featured Research

from universities, journals, and other organizations

Laser-light testing of breast tumor fiber patterns helps show whose cancer is spreading

Date:
November 1, 2012
Source:
Johns Hopkins Medicine
Summary:
Using advanced microscopes equipped with tissue-penetrating laser light, cancer imaging experts have developed a promising, new way to accurately analyze the distinctive patterns of ultra-thin collagen fibers in breast tumor tissue samples and to help tell if the cancer has spread.

Using advanced microscopes equipped with tissue-penetrating laser light, cancer imaging experts at Johns Hopkins have developed a promising, new way to accurately analyze the distinctive patterns of ultra-thin collagen fibers in breast tumor tissue samples and to help tell if the cancer has spread.

The Johns Hopkins researchers say their crisscrossing optical images, made by shining a laser back and forth across a biopsied tissue sample a few millionths of a meter thick, can potentially be used with other tests to more accurately determine the need for lymph node biopsy and removal in women at risk of metastatic breast cancer.

In what is believed to be the first study to measure minute changes in tumor connective tissue fibers, researchers found that eight women whose cancers had spread beyond the breast through the body's lymphatic system had about 10 percent more densely packed and radially spread-out collagenous structural proteins than six women whose cancers had not yet spread. Collagen fibers in the non-metastasized tumors, also obtained during breast biopsy, were more diffuse and arranged in a transverse or horizontal pattern. All 14 women in the study had aggressive, malignant breast cancer.

In the new report, to be published in the Journal of Biomedical Optics online Nov. 1, researchers say that if these "proof of principle" findings hold up in testing now under way in hundreds more women with or without metastatic breast cancer, then their new optical imaging tool could simplify testing for spreading disease and help people avoid unnecessary lymph node surgery.

"Our new diagnostic technique has the potential to help reassure thousands of breast cancer patients that their cancers have not spread to other organs, and could help them avoid the risks and pain currently involved in direct inspections of lymph nodes for the presence of cancerous cells," says study senior investigator Kristine Glunde, Ph.D.

Women with denser tumor fiber patterns would likely stand a greater chance of needing lymph node biopsy and removal and inspection of such tissue for malignant cells, says Glunde, an associate professor at the Johns Hopkins University School of Medicine Russell H. Morgan Department of Radiology and the Sidney Kimmel Comprehensive Cancer Center.

Glunde says complications from lymph node biopsy and more invasive dissection include risk of infection, pain, severe swelling and leakage of lymph fluid around the armpit, as well as stiffening in the arm, which can be permanent. An estimated 230,000 Americans were diagnosed in 2011 with invasive breast cancer, while another 57,000 were found to have noninvasive, or in-situ breast cancer.

Cancer imaging experts have known for more than a decade that the fibrous connective tissue located between cancer cells changes and bunches together as tumors grow and disease spreads, says study co-investigator Zaver Bhujwalla, Ph.D., a professor at Johns Hopkins and its Kimmel Cancer Center.

"Until now, however, we had no proof in principle that such minute and progressive changes outside cancer cells, in the tumor micro-environment or extracellular matrix, could be measured and potentially used to better guide our staging and treatment decisions," says Bhujwalla, who also serves as director of the Johns Hopkins In Vivo Cellular and Molecular Imaging Center (ICMIC), where the latest imaging study was performed.

It was also at ICMIC in 2010, supported with funds from the U.S. National Cancer Institute (NCI), that Glunde, Bhujwalla and fellow study co-investigator Meiyappan Solaiyappan, B.S., developed the specialized computer software used to analyze the microscopic spaces between tumor collagen fibers and calculate their density.

The tissue fiber images were obtained using an optical imaging technique called second harmonic generation microscopy, in which a long-wavelength laser light is deflected off the collagen fibers for a few seconds, allowing for several planes and fields of view to be captured. The longer infrared wavelength, at 880 micrometers, was chosen because it can penetrate the tissue beyond the colorful light waves visible to the human eye, but does not damage and heat up the cancer cells, as a slightly longer infrared wavelength would. Glunde says the many fields of view were randomly taken throughout the tissue sample, providing a "realistic representation of each breast cancer sample." Breast biopsy samples came from tissue research collections in Maryland.

The new study was performed entirely at Johns Hopkins, with funding support from the NCI, part of the National Institutes of Health.

In addition to Glunde, Bhujwalla and Solaiyappan, other Johns Hopkins researchers involved in this imaging study were Samata Kakkad, M.S.; Saraswati Sukumar, Ph.D.; Lisa Jacobs, M.D.; and Pedram Argani, M.D. Another study investigator was Dieter Leibfritz, Ph.D., at the University of Bremen, in Germany.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medicine. "Laser-light testing of breast tumor fiber patterns helps show whose cancer is spreading." ScienceDaily. ScienceDaily, 1 November 2012. <www.sciencedaily.com/releases/2012/11/121101141022.htm>.
Johns Hopkins Medicine. (2012, November 1). Laser-light testing of breast tumor fiber patterns helps show whose cancer is spreading. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/11/121101141022.htm
Johns Hopkins Medicine. "Laser-light testing of breast tumor fiber patterns helps show whose cancer is spreading." ScienceDaily. www.sciencedaily.com/releases/2012/11/121101141022.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins