Featured Research

from universities, journals, and other organizations

First noiseless single photon amplifier

Date:
November 12, 2012
Source:
Griffith University
Summary:
Research physicists have demonstrated the first device capable of amplifying the information in a single particle of light without adding noise. The next step will be to build additional quantum teleportation into the experiment, which will make the noiseless amplifier more directly useful for long-distance communication.

Research physicists have demonstrated the first device capable of amplifying the information in a single particle of light without adding noise.

The research collaboration, involving Griffith University, The University of Queensland and University of Science and Technology of China, was able to amplify the noisy quantum state of a single photon subjected to loss, without adding noise in the process; in fact, their amplification reduced the noise in the quantum state.

The results have been published November 12 on the Nature Physics website.

Team leader, Professor Geoff Pryde from Griffith University's Centre for Quantum Dynamics said the breakthrough would provide a new tool for all sorts of new quantum technologies.

"This is the first time the information stored in a single photon has been amplified," Professor Pryde said.

"The technique works by combining the noisy quantum state with a 'clean' single photon in the amplifier, and using quantum teleportation to transfer the information onto the new photon.

"The most obvious application for this work is in improved quantum cryptography; secret messaging which is guaranteed secure by the laws of physics."

It is expected the results will stimulate further interest in the fundamental laws that govern how well amplifiers can work and in developing uses of noiseless amplification techniques for other quantum information technology applications.

Research into such applications is being pursued in Australia's Centre of Excellence for Quantum Computation and Communication Technology, as well as around the world.

Fellow team member Professor Tim Ralph from the University of Queensland said this breakthrough was the culmination of years of research.

"We have been developing the ideas and experimental techniques that led to this breakthrough for the past 4 years," Professor Ralph said.

"Quantum information is useful but very fragile and normal amplification techniques destroy it.

"The key feature of our photon amplifier is that it preserves the quantum information and may help overcome the current distance limitations of quantum communication."

The next step for the research team will be to build additional quantum teleportation into the experiment, which will make the noiseless amplifier more directly useful for long-distance communication.


Story Source:

The above story is based on materials provided by Griffith University. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Kocsis, G. Y. Xiang, T. C. Ralph, G. J. Pryde. Heralded noiseless amplification of a photon polarization qubit. Nature Physics, 2012; DOI: 10.1038/nphys2469

Cite This Page:

Griffith University. "First noiseless single photon amplifier." ScienceDaily. ScienceDaily, 12 November 2012. <www.sciencedaily.com/releases/2012/11/121112101050.htm>.
Griffith University. (2012, November 12). First noiseless single photon amplifier. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2012/11/121112101050.htm
Griffith University. "First noiseless single photon amplifier." ScienceDaily. www.sciencedaily.com/releases/2012/11/121112101050.htm (accessed September 20, 2014).

Share This



More Computers & Math News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
How To Protect Your Data In The Still-Vulnerable iOS 8

How To Protect Your Data In The Still-Vulnerable iOS 8

Newsy (Sep. 20, 2014) — One security researcher says despite Apple's efforts to increase security in iOS 8, it's still vulnerable to law enforcement data-transfer techniques. Video provided by Newsy
Powered by NewsLook.com
How Much Privacy Protection Will Google's Android L Provide?

How Much Privacy Protection Will Google's Android L Provide?

Newsy (Sep. 19, 2014) — Google's local encryption will make it harder for law enforcement or malicious actors to access the contents of devices running Android L. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins