Featured Research

from universities, journals, and other organizations

Increasing efficiency of wireless networks: New method could have broad impacts on mobile Internet and wireless industries

Date:
November 13, 2012
Source:
University of California - Riverside
Summary:
Researchers have developed a new method that doubles the efficiency of wireless networks and could have a large impact on the mobile Internet and wireless industries.

From left, Yingbo Hua and Ping Liang stand in the anechoic (non-echoing) radio frequency chamber where they conduct research.
Credit: Peter Phun

Two professors at the University of California, Riverside Bourns College of Engineering have developed a new method that doubles the efficiency of wireless networks and could have a large impact on the mobile Internet and wireless industries.

Related Articles


Efficiency of wireless networks is key because there is a limited amount of spectrum to transmit voice, text and Internet services, such as streaming video and music. And when spectrum does become available it can fetch billions of dollars at auction.

The "spectrum crunch" is quickly being accelerated as customers convert from traditional cell phones to smartphones and tablets. For example, tablets generate 121 times more traffic than a traditional cell phone.

Without making networks more efficient, customers are likely to drop more calls, pay more money for service, endure slower data speed and not see an unlimited data plan again.

The UC Riverside findings were outlined in a paper titled "A method for broadband full-duplex MIMO radio" recently published online in the journal IEEE Signal Processing Letters. It was co-authored by Yingbo Hua and Ping Liang, who are both electrical engineering professors, and three of their graduate students: Yiming Ma, Ali Cagatay Cirik and Qian Gao.

Current radios for wireless communications are half-duplex, meaning signals are transmitted and received in two separate channels. Full duplex radios, which transmit signals at the same time in the same frequency band, can double the efficiency of the spectrum.

However, to make a full duplex radio, one must solve a problem: interference between the transmission and receiving functions. The technology of full duplex radio is not yet ready for the current 3G and 4G networks.

The interference caused by signals from cell towers could be billions times more powerful than the ones towers are trying to pick up from a user's smartphone. As a result, incoming signals would get drowned out.

The UC Riverside researchers have found a new solution called "time-domain transmit beamforming," which digitally creates a time-domain cancellation signal, couples it to the radio frequency frontend to allow the radio to hear much weaker incoming signals while transmitting strong outgoing signals at the same frequency and same time.

This new solution is indispensable for a full-duplex radio in general while it is complementary to other required solutions or components. The new solution not only has a sound theoretical proof, but also leads to a lower cost, faster and more accurate channel estimation for robust and effective cancellation.

"We believe the future applications of full duplex radios are huge, ranging from cell towers, backhaul networks and wireless regional area networks to billions handheld devices for data intensive application such as FaceTime," said Liang, who added that the researchers have had discussions with several major wireless telecommunication equipment companies.

Liang and Hua believe their research has commercial potential in part because most of the core components required are digital and therefore costly new components won't need to be added to existing infrastructure.

Liang and Hua also believe cell towers are one of the most likely places to start implementing full-duplex radios, in large part because they are less constrained by existing standards.

Liang and Hua also see applications in cognitive radio, a type of wireless communication in which a transceiver can detect which communication channels are in use and which are not, and move into vacant channels while avoiding occupied ones. While cellular frequency bands are overloaded, other bands, such as military, amateur radio and TV, are often underutilized.


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Sean Nealon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yingbo Hua, Ping Liang, Yiming Ma, Ali Cagatay Cirik, Qian Gao. A Method for Broadband Full-Duplex MIMO Radio. IEEE Signal Processing Letters, 2012; 19 (12): 793 DOI: 10.1109/LSP.2012.2221710

Cite This Page:

University of California - Riverside. "Increasing efficiency of wireless networks: New method could have broad impacts on mobile Internet and wireless industries." ScienceDaily. ScienceDaily, 13 November 2012. <www.sciencedaily.com/releases/2012/11/121113151303.htm>.
University of California - Riverside. (2012, November 13). Increasing efficiency of wireless networks: New method could have broad impacts on mobile Internet and wireless industries. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2012/11/121113151303.htm
University of California - Riverside. "Increasing efficiency of wireless networks: New method could have broad impacts on mobile Internet and wireless industries." ScienceDaily. www.sciencedaily.com/releases/2012/11/121113151303.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins