Featured Research

from universities, journals, and other organizations

Tissue engineering -- Growing new organs, and more: Research could lead to better ways to heal injuries and develop new drugs

Date:
December 14, 2012
Source:
Massachusetts Institute of Technology
Summary:
In the 1970s and 1980s, tissue engineers began working on growing replacement organs for transplantation into patients. While scientists are still targeting that goal, much of the tissue engineering research at MIT is also focused on creating tissue that can be used in the lab to model human disease and test potential new drugs.

In the 1970s and 1980s, tissue engineers began working on growing replacement organs for transplantation into patients. While scientists are still targeting that goal, much of the tissue engineering research at MIT is also focused on creating tissue that can be used in the lab to model human disease and test potential new drugs.

This kind of disease modeling could have a great impact in the near term, says MIT professor Sangeeta Bhatia, who is developing liver tissue to study hepatitis C and malaria infection.

Like other human tissues, liver is difficult to grow outside the human body because cells tend to lose their function when they lose contact with neighboring cells. "The challenge is to grow the cells outside the body while maintaining their function after being removed from their usual microenvironment," says Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science.

Bhatia recently developed the first stem-cell-derived liver tissue model that can be infected with the hepatitis C virus. She has also designed thin slices of human liver tissue that can be implanted in mice, enabling rapid studies of potential drugs.

In a large-scale project recently funded by the Defense Advanced Research Projects Administration, several MIT faculty members are working on a "human-on-a-chip" system that scientists could use to study up to 10 human tissue types at a time. The goal is to create a customizable system of interconnected tissues, grown in small wells on a plate, allowing researchers to analyze how tissues respond to different drugs.

"If they're developing a drug for Alzheimer's, they may want to examine the uptake by the intestine, the metabolism by the liver, and the toxicity on heart tissue, brain tissue or lung tissue," says Linda Griffith, the S.E.T.I. Professor of Biological and Mechanical Engineering at MIT and leader of the research team, which also includes scientists from the Charles Stark Draper Laboratory, Zyoxel and MatTek.

Regeneration

Another near-term goal for tissue engineers is developing regenerative therapies that help promote wound healing.

"Healthy cells sitting adjacent to diseased tissues can influence the biology of repair and regeneration," says MIT professor Elazer Edelman, who has developed implantable scaffolds embedded with endothelial cells, which secrete a vast array of proteins that respond to injury.

Endothelial cells, normally found lining blood vessels, could help repair damage caused by angioplasty or other surgical interventions; smoke inhalation; and cancer or cardiovascular disease. The implants are now in clinical trials to treat blood-vessel injuries caused by the needles used to perform dialysis in patients with kidney failure. Better repair of those injuries could double the time that such patients can stay on dialysis, which is now limited to about three years, says Edelman, the Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology.

Similar scaffolds could also help heal serious injuries such as smashed bones, which are very difficult to repair. Griffith and George Muschler, an orthopedic surgeon at the Cleveland Clinic, have developed ceramic scaffolds coated with immature blood cells taken from a patient's bone marrow, which are now being tested in animals.

Replacement

One of the earliest successes of implantable tissues was the development of artificial skin, which is now commonly used to treat burn victims. Skin was a good place to start because its function is easier to mimic than that of more complex organs such as the heart or liver, says Robert Langer, the David H. Koch Institute Professor at MIT, who was one of the pioneers of the technology behind tissue engineering, along with Ioannis Yannas, MIT professor of mechanical engineering.

Langer is now working on more complex tissues, such as cardiac-tissue scaffolds that include electronic sensors and a synthetic polymer that could restore vocal-cord function in people who have lost their voices through overuse or other types of damage.

One major challenge for designing implantable organs is that the tissues need to include blood vessels that can connect to the patient's own blood supply. In Langer's lab, researchers are working on inducing blood vessels to form by growing cells on nanopatterned surfaces.

In Bhatia's lab, where tissue-engineering research is evenly divided between modeling diseases and working toward implantable organs, researchers recently developed 3-D liver tissues that include their own network of blood vessels. In a recent paper in Nature Materials, Bhatia and Christopher Chen of the University of Pennsylvania described how they built the tissues by printing a 3-D network of sugar molecules, then growing liver tissue around it. After dissolving the sugar, they stimulated blood vessels to fill in the space left behind.

Though still a long-term goal, being able to regenerate new organs could have a great impact on the future of health care, Langer says. "It's the kind of thing that can transform society," he says. "You can't have a drug that will grow a new liver or a new heart, so this could be huge."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jordan S. Miller, Kelly R. Stevens, Michael T. Yang, Brendon M. Baker, Duc-Huy T. Nguyen, Daniel M. Cohen, Esteban Toro, Alice A. Chen, Peter A. Galie, Xiang Yu, Ritika Chaturvedi, Sangeeta N. Bhatia, Christopher S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 2012; 11 (9): 768 DOI: 10.1038/nmat3357

Cite This Page:

Massachusetts Institute of Technology. "Tissue engineering -- Growing new organs, and more: Research could lead to better ways to heal injuries and develop new drugs." ScienceDaily. ScienceDaily, 14 December 2012. <www.sciencedaily.com/releases/2012/12/121214095433.htm>.
Massachusetts Institute of Technology. (2012, December 14). Tissue engineering -- Growing new organs, and more: Research could lead to better ways to heal injuries and develop new drugs. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/12/121214095433.htm
Massachusetts Institute of Technology. "Tissue engineering -- Growing new organs, and more: Research could lead to better ways to heal injuries and develop new drugs." ScienceDaily. www.sciencedaily.com/releases/2012/12/121214095433.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins