Featured Research

from universities, journals, and other organizations

Measuring flow using a tiny wobbling tube

Date:
December 17, 2012
Source:
University of Twente
Summary:
One milligram per hour: fluid flow can be measured with great precision using a tiny ‘wobbling’ tube with a diameter of only 40 micrometers. Thanks to a new technique, the sensor, which makes use of the ‘Coriolis effect’, can be made even more compact, e.g. for medical applications.

The Coriolis mass flow sensor. The tube is the U-shaped tiny line. In the left lower corner, the electric fingers are visible for measuring the displacement of the tube and activating movement.
Credit: Image courtesy of University of Twente

One milligram per hour: fluid flow can be measured with great precision using a tiny 'wobbling' tube with a diameter of only 40 micrometres. Thanks to a new technique, the sensor, which makes use of the 'Coriolis effect', can be made even more compact, e.g. for medical applications.

Scientists at the University of Twente's MESA+ Institute for Nanotechnology have published an article on the subject in Applied Physics Letters.

Coriolis meters are often enormous instruments mounted in a pipeline to measure liquid flow accurately. Reduced to micrometre dimensions the result is a sensor that can measure extremely slow-moving small quantities of fluids. The fluid is passed through a tiny rectangular tube that is made to wobble. The Coriolis effect then causes the tube to move upwards as well, and this upward displacement is a measure of the amount of fluid flowing through it.

No magnets

Until now magnets have been used to bring about the wobbling motion. One of the problems was that the magnets are far bigger than the actual sensor. In the Applied Physics Letters article researcher Harmen Droogendijk introduces a new method, known as 'parametric excitation'. Dozens of 'electric fingers' attached to the tube fit between identical opposing fingers mounted on supports running parallel to the tube. The extent to which these opposing sets of fingers slide between one another can be used to measure the tube's lateral displacement. But we could also use them to set the tube in motion, thought Droogendijk. He found that there is a limited area of electrical tension where the tube moves up and down much more than at a lower or higher tension, though this has to be tuned very precisely. Droogendijk carried out mathematical modelling, resulting in a new design that no longer needs magnets.

More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

The research was carried out in the Transducers Science and Technology group led by Prof. Gijs Krijnen, which is part of the University of Twente's MESA+ Institute for Nanotechnology. It received financial support from the Dutch national nanotechnology program NanoNed. More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

Industrial applications

The Coriolis mass flow sensor is being further developed by Bronkhorst High-Tech in Ruurlo to produce a precision instrument for such things as monitoring medical IV pumps, analysing medicines using liquid chromatography, and use in microreactors and the manufacture of solar cells.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Droogendijk, J. Groenesteijn, J. Haneveld, R. G. P. Sanders, R. J. Wiegerink, T. S. J. Lammerink, J. C. Lötters, G. J. M. Krijnen. Parametric excitation of a micro Coriolis mass flow sensor. Applied Physics Letters, 2012; 101 (22): 223511 DOI: 10.1063/1.4769094

Cite This Page:

University of Twente. "Measuring flow using a tiny wobbling tube." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217091148.htm>.
University of Twente. (2012, December 17). Measuring flow using a tiny wobbling tube. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2012/12/121217091148.htm
University of Twente. "Measuring flow using a tiny wobbling tube." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217091148.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins