Featured Research

from universities, journals, and other organizations

Cheating to create the perfect simulation: Physicists on way to describing inside of neutron stars

Date:
January 17, 2013
Source:
Friedrich-Schiller-Universitaet Jena
Summary:
Scientists have succeeded in simulating the strong atomic nuclear interactions to enable its calculability while at the same time preserving the typical characteristics of a neutron star.

The planet Earth will die -- if not before, then when the Sun col­lapses. This is going to happen in approximately seven billion years. In the uni­verse however the death of suns and planets is an everyday occurance and our solar system partly consists of their remnants.

Related Articles


The end of stars -- suns -- rich in mass is often a neutron star. These "stars' liches" demonstrate a high density, in which atoms are extremely compressed. Such neutron stars are no bigger than a small town, but hea­vier than our sun, as physicist PD Dr. Axel Maas of the Jena University (Germany) points out. He adds: "The atomic nuclei are very densely packed." Compared to ato­ms, like water, the nuclei of neutron stars are as tightly packed as a bus with 1.000 pas­sengers crowded together in comparison to a bus with only the driver on board. In these densely packed atomic nuclei, so-called "nuclear forces" are at work. They keep the neutron star together and are responsible for its "eternal life" -- and for the last 35 years the strong nuclear interactions were amongst the greatest challenges of theoretical physics.

First Theory for such a Tight Package

Together with colleagues from the Universities of Jena and Darmstadt (both Germany) Axel Maas has succeeded in simulating the strong atomic nuclear interactions to enable its calculability while at the same time preserving the typical charac­teristics of a neutron star. "It is the first theory for such a tight package," the Jena Physicist says. Previously simulations trying to specify the matter inside of neutron stars collapsed far too much in size and yielded the wrong properties time and again -- even on the most powerful computers. "These simulations didn't work because there are too many atomic nuclei," Maas explains the problem, whose solution the world of physics has come closer to due to the calculations of the Jena researchers. To get there, the scientists did so many calculations at the Loewe Center for Science Com­puting (CSC) in Frankfurt, that it would have taken a single PC approximately 2.500 years to do the same.

"We weren't able to solve the initial problem either," Axel Maas concedes, as algorithms are not (yet) powerful enough. However, the Jena physi­cist who had been researching this problem since 2007 and his colleagues "reached a new level of quality." They found a "modification of the theory for such a tight package," Maas says. And thus they enabled nuclear material to be simulated. Most characteristics of the neutron star are being preserved with the Jena method, but now they enabled its cal­culability.

Intelligently Modifyed the Nu­clear Forces

The team accomplished this big step forward by intelligently modifying the nu­clear forces and by solving the stacking problem of the atoms. That they were at the same time 'cheating a bit', the physicists freely admit. However, Maas firmly believes: "We found the best possible shortcut." Now they know "what is relevant for the original simulation."

Now this new verifying method is available for numerous questions and theories about neutron stars and very dense atomic nuclei packages. Maas already knows of first groups of scientists who are planning to use the Jena findings to work with them and to carry them further. The scientists involved are already in the pro­cess of enlarging the simulation and to verify the results: the results enabling scientists to understand the inside of neutron stars eventually.


Story Source:

The above story is based on materials provided by Friedrich-Schiller-Universitaet Jena. Note: Materials may be edited for content and length.


Journal Reference:

  1. Axel Maas, Lorenz von Smekal, Björn Wellegehausen, Andreas Wipf. Phase diagram of a gauge theory with fermionic baryons. Physical Review D, 2012; 86 (11) DOI: 10.1103/PhysRevD.86.111901

Cite This Page:

Friedrich-Schiller-Universitaet Jena. "Cheating to create the perfect simulation: Physicists on way to describing inside of neutron stars." ScienceDaily. ScienceDaily, 17 January 2013. <www.sciencedaily.com/releases/2013/01/130117133215.htm>.
Friedrich-Schiller-Universitaet Jena. (2013, January 17). Cheating to create the perfect simulation: Physicists on way to describing inside of neutron stars. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2013/01/130117133215.htm
Friedrich-Schiller-Universitaet Jena. "Cheating to create the perfect simulation: Physicists on way to describing inside of neutron stars." ScienceDaily. www.sciencedaily.com/releases/2013/01/130117133215.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) — NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) — Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) — Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins