Featured Research

from universities, journals, and other organizations

Is athleticism linked to brain size? Exercise-loving mice have larger midbrains

Date:
January 17, 2013
Source:
University of California - Riverside
Summary:
Is athleticism linked to brain size? Researchers performed laboratory experiments on house mice and found that mice that have been bred for dozens of generations to be more exercise-loving have larger midbrains than those that have not been selectively bred this way -- the first example in which selection for a particular mammalian behavior has been shown to result in a change in size of a specific brain region.

This image shows a 3-D reconstruction of a mouse brain based on magnetic resonance imaging (MRI). The forebrain is seen in green, the midbrain in yellow and the cerebellum in orange. The forebrain region has been made partially transparent to show the underlying regions (from left to right, the hippocampus and caudate).
Credit: Garland Lab, UC Riverside

Is athleticism linked to brain size? To find out, researchers at the University of California, Riverside performed laboratory experiments on house mice and found that mice that have been bred for dozens of generations to be more exercise-loving have larger midbrains than those that have not been selectively bred this way.

Related Articles


Theodore Garland's lab measured the brain mass of these uniquely athletic house mice, bred for high voluntary wheel-running, and analyzed their high-resolution brain images. The researchers found that the volume of the midbrain -- a small region of the brain that relays information for the visual, auditory, and motor systems -- in the bred-for-athleticism mice was nearly 13 percent larger than the midbrain volume in the control or "regular" mice.

"To our knowledge, this is the first example in which selection for a particular mammalian behavior -- high voluntary wheel running in house mice in our set of experiments -- has been shown to result in a change in size of a specific brain region," said Garland, a professor of biology and the principal investigator of the research project.

Study results appeared online Jan. 16 in The Journal of Experimental Biology.

In Garland's lab, selection for high voluntary wheel running in lab house mice has been ongoing for nearly 20 years -- or more than 65 generations of house mice. To analyze brain mass and volume on independent samples of house mice, the researchers dissected the brains into two different regions, the cerebellum, a region of the brain crucial for controlling movement, and the non-cerebellar areas. They then weighed these sections separately.

The cerebellum is important for coordination. The midbrain, a part of the non-cerebellar area that contains a variety of sensory and motor nuclei, is essential for reward learning, motivation and reinforcing behavior. Previously, species of mammals and birds with larger brains have been shown to have higher survivability in novel environments.

The researchers found that compared to regular mice, those mice that had been selectively bred for high voluntary wheel-running had significantly greater midbrain volume as well as larger non-cerebellar brain mass, but not larger cerebella or total brain mass.

The primary question the researchers sought to answer in their study is whether selection on a particular behavioral trait, such as voluntary exercise, using an experimental evolution paradigm, has resulted in a change in brain size. An additional question they posed is whether any change in brain size involves the entire brain or is "mosaic," that is, involving only a section or some sections of the brain.

"Our finding that mice bred for high levels of voluntary exercise have an enlarged non-cerebellar brain mass and an enlarged midbrain, but do not show a statistically significant increase in overall brain mass or volume supports the mosaic theory of brain evolution," Garland said.

What implications the current research has for humans is not immediately clear.

"It is possible that individual differences in the propensity or ability for exercise in humans are associated with individual differences in the size of the midbrain, but no one has studied that," Garland said. "If it were possible to take MRIs of babies' midbrains before these babies started 'exercising' and then follow these babies through life, it may be that inherent, genetically-based differences in midbrain size detected soon after birth will influence how much they would be likely to exercise as adults."


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Iqbal Pittalwala. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. M. Kolb, E. L. Rezende, L. Holness, A. Radtke, S. K. Lee, A. Obenaus, T. Garland. Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. Journal of Experimental Biology, 2013; 216 (3): 515 DOI: 10.1242/jeb.076000

Cite This Page:

University of California - Riverside. "Is athleticism linked to brain size? Exercise-loving mice have larger midbrains." ScienceDaily. ScienceDaily, 17 January 2013. <www.sciencedaily.com/releases/2013/01/130117133319.htm>.
University of California - Riverside. (2013, January 17). Is athleticism linked to brain size? Exercise-loving mice have larger midbrains. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/01/130117133319.htm
University of California - Riverside. "Is athleticism linked to brain size? Exercise-loving mice have larger midbrains." ScienceDaily. www.sciencedaily.com/releases/2013/01/130117133319.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins