Featured Research

from universities, journals, and other organizations

Liquid crystal's chaotic inner dynamics

Date:
January 24, 2013
Source:
Springer Science+Business Media
Summary:
Scientists have unearthed a new dynamic process induced by strong electric fields in thin liquid crystal cells. Liquid crystal displays are ubiquitous. Now, physicists have demonstrated that the application of a very strong alternating electric field to thin liquid crystal cells leads to a new distinct dynamic effect in the response of the cells.

Scientists have unearthed a new dynamic process induced by strong electric fields in thin liquid crystal cells.
Credit: Image courtesy of Springer Science+Business Media

Scientists have unearthed a new dynamic process induced by strong electric fields in thin liquid crystal cells.

Related Articles


Liquid crystal displays are ubiquitous. Now, Polish physicists have demonstrated that the application of a very strong alternating electric field to thin liquid crystal cells leads to a new distinct dynamic effect in the response of the cells. The theory of spatio-temporal chaos explains this effect. It was elucidated by Wojciech Jeżewski and colleagues from the Institute of Molecular Physics, Polish Academy of Sciences, in Poznań, Poland, and is about to be published in EPJ E. This effect has implications for the operation of liquid-crystal devices because their operation is based on the electro-optic switching phenomenon, subject to the newly discovered effect.

The authors first applied an alternating electric field to semi-transparent, conducting plates of cells containing a liquid crystal substance. Such systems are characterised by a spontaneous electric polarisation that can be reversed by the application of an external electric field.

The Jeżewski team then registered the resulting molecular reorientations by recording changes in the intensity of light transmitted by the liquid crystal sample, or spectra. In particular, the authors experimentally identified a distinct high-frequency band in the response, reflecting the activation of a specific dynamic process inside the sample.

Theoretical studies of the complex molecular reorientation dynamics confirmed experimental observations. The team explained the response of the sample by numerically solving the equation describing the motion of molecules subjected to very strong alternating fields. Unlike previous approaches, these simulations did not make any assumption about the sample dynamics.

The effect they showed was associated with a chaotic molecular reorientation induced by a strong field of sufficiently high frequency. Furthermore, a unique experimental setup led to signals, due to strong excitations of liquid crystals at frequencies less than the frequency of the external electric field, being registered.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Jeżewski, I. Śliwa, W. Kuczyński. Strongly nonlinear dynamics of ferroelectric liquid crystals. The European Physical Journal E, 2013; 36 (1) DOI: 10.1140/epje/i2013-13002-7

Cite This Page:

Springer Science+Business Media. "Liquid crystal's chaotic inner dynamics." ScienceDaily. ScienceDaily, 24 January 2013. <www.sciencedaily.com/releases/2013/01/130124092147.htm>.
Springer Science+Business Media. (2013, January 24). Liquid crystal's chaotic inner dynamics. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2013/01/130124092147.htm
Springer Science+Business Media. "Liquid crystal's chaotic inner dynamics." ScienceDaily. www.sciencedaily.com/releases/2013/01/130124092147.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) — The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) — A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Pilot Uses Full-Plane Parachute in Crash

Raw: Pilot Uses Full-Plane Parachute in Crash

AP (Jan. 26, 2015) — A pilot en route to Hawaii crashed his single-engine plane into the Pacific Ocean Monday and escaped safely thanks to the use of a full-plane parachute. US Coast Guard video captures the dramatic landing. (Jan. 26) Video provided by AP
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins