Featured Research

from universities, journals, and other organizations

Neuroscientists pinpoint location of fear memory in amygdala

Date:
January 28, 2013
Source:
Cold Spring Harbor Laboratory
Summary:
Neuroscientists have shed new light on the brain circuit that is involved in fear learning, memory, responses. They show that fear memory is encoded in a subdivision of the central amygdala. In addition, a particular class of neurons, somatostatin-positive neurons, is required to translate that memory into fear responses.

An image showing neurons in the lateral subdivision of the central amygdala (CeL). In red are somatostain-positive (SOM+) neurons, which control fear; in green are another set of neurons known as PKC-delta cells.
Credit: Image courtesy of Bo Li

A rustle of undergrowth in the outback: it's a sound that might make an animal or person stop sharply and be still, in the anticipation of a predator. That "freezing" is part of the fear response, a reaction to a stimulus in the environment and part of the brain's determination of whether to be afraid of it.

A neuroscience group at Cold Spring Harbor Laboratory (CSHL) led by Assistant Professor Bo Li Ph.D., together with collaborator Professor Z. Josh Huang Ph.D., have just released the results of a new study that examines the how fear responses are learned, controlled, and memorized. They show that a particular class of neurons in a subdivision of the amygdala plays an active role in these processes.

Locating fear memory in the amygdala

Previous research had indicated that structures inside the amygdalae, a pair of almond-shaped formations that sit deep within the brain and are known to be involved in emotion and reward-based behavior, may be part of the circuit that controls fear learning and memory. In particular, a region called the central amygdala, or CeA, was thought to be a passive relay for the signals relayed within this circuit.

Li's lab became interested when they observed that neurons in a region of the central amygdala called the lateral subdivision, or CeL, "lit up" in a particular strain of mice while studying this circuit.

"Neuroscientists believed that changes in the strength of the connections onto neurons in the central amygdala must occur for fear memory to be encoded," Li says, "but nobody had been able to actually show this."

This led the team to further probe into the role of these neurons in fear responses and furthermore to ask the question: If the central amygdala stores fear memory, how is that memory trace read out and translated into fear responses?

To examine the behavior of mice undergoing a fear test the team first trained them to respond in a Pavlovian manner to an auditory cue. The mice began to "freeze," a very common fear response, whenever they heard one of the sounds they had been trained to fear.

To study the particular neurons involved, and to understand them in relation to the fear-inducing auditory cue, the CSHL team used a variety of methods. One of these involved delivering a gene that encodes for a light-sensitive protein into the particular neurons Li's group wanted to look at.

By implanting a very thin fiber-optic cable directly into the area containing the photosensitive neurons, the team was able to shine colored laser light with pinpoint accuracy onto the cells, and in this manner activate them. This is a technique known as optogenetics. Any changes in the behavior of the mice in response to the laser were then monitored.

A subset of neurons in the central amygdala controls fear expression

The ability to probe genetically defined groups of neurons was vital because there are two sets of neurons important in fear-learning and memory processes. The difference between them, the team learned, was in their release of message-carrying neurotransmitters into the spaces called synapses between neurons. In one subset of neurons, neurotransmitter release was enhanced; in another it was diminished. If measurements had been taken across the total cell population in the central amygdala, neurotransmitter levels from these two distinct sets of neurons would have been averaged out, and thus would not have been detected.

Li's group found that fear conditioning induced experience-dependent changes in the release of neurotransmitters in excitatory synapses that connect with inhibitory neurons -- neurons that suppress the activity of other neurons -- in the central amygdala. These changes in the strength of neuronal connections are known as synaptic plasticity.

Particularly important in this process, the team discovered, were somatostatin-positive (SOM+) neurons. Somatostatin is a hormone that affects neurotransmitter release. Li and colleagues found that fear-memory formation was impaired when they prevent the activation of SOM+ neurons.

SOM+ neurons are necessary for recall of fear memories, the team also found. Indeed, the activity of these neurons alone proved sufficient to drive fear responses. Thus, instead of being a passive relay for the signals driving fear learning and responses in mice, the team's work demonstrates that the central amygdala is an active component, and is driven by input from the lateral amygdala, to which it is connected.

"We find that the fear memory in the central amygdala can modify the circuit in a way that translates into action -- or what we call the fear response," explains Li.

In the future Li's group will try to obtain a better understanding of how these processes may be altered in post-traumatic stress disorder (PTSD) and other disorders involving abnormal fear learning. One important goal is to develop pharmacological interventions for such disorders.

Li says more research is needed, but is hopeful that with the discovery of specific cellular markers and techniques such as optogenetics, a breakthrough can be made.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Haohong Li, Mario A Penzo, Hiroki Taniguchi, Charles D Kopec, Z Josh Huang, Bo Li. Experience-dependent modification of a central amygdala fear circuit. Nature Neuroscience, 2013; DOI: 10.1038/nn.3322

Cite This Page:

Cold Spring Harbor Laboratory. "Neuroscientists pinpoint location of fear memory in amygdala." ScienceDaily. ScienceDaily, 28 January 2013. <www.sciencedaily.com/releases/2013/01/130128104739.htm>.
Cold Spring Harbor Laboratory. (2013, January 28). Neuroscientists pinpoint location of fear memory in amygdala. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/01/130128104739.htm
Cold Spring Harbor Laboratory. "Neuroscientists pinpoint location of fear memory in amygdala." ScienceDaily. www.sciencedaily.com/releases/2013/01/130128104739.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins