Featured Research

from universities, journals, and other organizations

One in, two out: Simulating more efficient solar cells

Date:
January 28, 2013
Source:
University of California Davis (UCD)
Summary:
Using an exotic form of silicon could substantially improve the efficiency of solar cells, according to computer simulations.

Computer simulations show that when a light particle (blue wave on left) hits a crystal of a high-pressure form of silicon, it releases two electron-hole pairs (red circles/green rings), which generate electric current.
Credit: Stefan Wippermann/UC Davis photo

Using an exotic form of silicon could substantially improve the efficiency of solar cells, according to computer simulations by researchers at the University of California, Davis, and in Hungary.

The work was published Jan. 25 in the journal Physical Review Letters.

Solar cells are based on the photoelectric effect: a photon, or particle of light, hits a silicon crystal and generates a negatively charged electron and a positively charged hole. Collecting those electron-hole pairs generates electric current.

Conventional solar cells generate one electron-hole pair per incoming photon, and have a theoretical maximum efficiency of 33 percent. One exciting new route to improved efficiency is to generate more than one electron-hole pair per photon, said Giulia Galli, professor of chemistry at UC Davis and co-author of the paper.

"This approach is capable of increasing the maximum efficiency to 42 percent, beyond any solar cell available today, which would be a pretty big deal," said lead author Stefan Wippermann, a postdoctoral researcher at UC Davis.

"In fact, there is reason to believe that if parabolic mirrors are used to focus the sunlight on such a new-paradigm solar cell, its efficiency could reach as high as 70 percent," Wippermann said.

Galli said that nanoparticles have a size of nanometers, typically just a few atoms across. Because of their small size, many of their properties are different from bulk materials. In particular, the probability of generating more than one electron-hole pair is much enhanced, driven by an effect called "quantum confinement." Experiments to explore this paradigm are being pursued by researchers at the Los Alamos National Laboratory, the National Renewable Energy Laboratory in Golden, Colo., as well as at UC Davis.

"But with nanoparticles of conventional silicon, the paradigm works only in ultraviolet light," Wippermann said. "This new approach will become useful only when it is demonstrated to work in visible sunlight."

The researchers simulated the behavior of a structure of silicon called silicon BC8, which is formed under high pressure but is stable at normal pressures, much as diamond is a form of carbon formed under high pressure but stable at normal pressures.

The computer simulations were run through the National Energy Research Scientific Supercomputing Center at the Lawrence Berkeley Laboratory, which granted the project 10 million hours of supercomputer time.

The simulations demonstrated that nanoparticles of silicon BC8 indeed generate multiple electron-hole pairs per photon even when exposed to visible light.

"This is more than an academic exercise. A Harvard-MIT paper showed that when normal silicon solar cells are irradiated with laser light, the energy the laser emits may create a local pressure high enough to form BC8 nanocrystals. Thus, laser or chemical pressure treatment of existing solar cells may turn them into these higher-efficiency cells," said co-author Gergely Zimanyi, professor of physics at UC Davis.

Other authors of the paper are Marton Voros and Adam Gali at the Budapest University of Technology and Economics, Hungary.

The work was funded by a National Science Foundation Solar Collaborative grant awarded to Zimanyi, Galli and colleagues at UC Davis and UC Santa Cruz in 2011. The project brings together experts in material science, chemistry, computer simulations and statistics to develop new approaches to solar power.


Story Source:

The above story is based on materials provided by University of California Davis (UCD). Note: Materials may be edited for content and length.


Cite This Page:

University of California Davis (UCD). "One in, two out: Simulating more efficient solar cells." ScienceDaily. ScienceDaily, 28 January 2013. <www.sciencedaily.com/releases/2013/01/130128142900.htm>.
University of California Davis (UCD). (2013, January 28). One in, two out: Simulating more efficient solar cells. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/01/130128142900.htm
University of California Davis (UCD). "One in, two out: Simulating more efficient solar cells." ScienceDaily. www.sciencedaily.com/releases/2013/01/130128142900.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins