Featured Research

from universities, journals, and other organizations

Experimental drug combination selectively destroys lymphoma cells

Date:
February 6, 2013
Source:
Virginia Commonwealth University
Summary:
Laboratory experiments suggest that a novel combination of the drugs ibrutinib and bortezomib could potentially be an effective new therapy for several forms of blood cancer, including diffuse large B-cell lymphoma and mantle cell lymphoma.

Laboratory experiments conducted by scientists at Virginia Commonwealth University Massey Cancer Center suggest that a novel combination of the drugs ibrutinib and bortezomib could potentially be an effective new therapy for several forms of blood cancer, including diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL).

Related Articles


The study, published in the British Journal of Hematology, showed that the experimental drug combination killed cancer cells through a form of cell suicide known as apoptosis, but was relatively non-toxic to normal, healthy cells. Ibrutinib is a new agent that inhibits the B-cell receptor (BCR) signaling complex, which plays an important role in the survival of malignant B-cells. It has shown very promising initial results in the treatment of patients with B-cell malignancies, including chronic lymphocytic leukemia (CLL), DLBCL and MCL. The synergistic interaction of the two drugs proved lethal even to lymphoma cells that had become resistant to bortezomib, when used alone.

"Bortezomib is currently used to treat MCL and multiple myeloma, but, unfortunately, many patients develop resistance to the drug," says the study's principle investigator Steven Grant, M.D., Shirley Carter Olsson and Sture Gordon Olsson Chair in Oncology Research, associate director for translational research, program co-leader of Developmental Therapeutics and Cancer Cell Signaling research member at VCU Massey Cancer Center. "We are hopeful that this combination therapy may circumvent such resistance and eventually help fill an urgent need for more effective therapies for patients with these uncommon blood disorders."

With cultured DLBCL and MCL cells in laboratory experiments spearheaded by Girija Dasmahapatra, Ph.D., lead author of the study's manuscript and instructor in the Department of Internal Medicine at VCU School of Medicine, the scientists found that ibrutinib blocked several molecular pathways that the cancer cells use for growth and survival. When ibrutinib was combined with bortezomib, the scientists observed a high level of synergism between the two drugs that resulted in profound cell death due to DNA damage, culminating in apoptosis. The research findings suggest that the effectiveness of the combination therapy against bortezomib-resistant lymphoma cells may stem from ibrutinib's ability to block signaling pathways used by the cancer cells to survive bortezomib exposure.

Specifically, exposure of DLBCL and MCL cells to ibrutinib blocked the cancer-promoting NF-κB, AKT and ERK1/2 signaling pathways. These signaling pathways provide cells with the ability to adapt to otherwise harmful environmental stimuli by transmitting messages from receptors located at the cell's surface to proteins within the cell that trigger a variety of biological processes. In particular, NF-κB, AKT and ERK1/2 have been shown to carry out many functions that allow cancer cells to survive and proliferate. Significantly, each of these pathways has been implicated in the development of resistance to proteasome inhibitors such as bortezomib.

"We have provided a framework for understanding how an agent like ibrutinib might be employed to enhance the activity of an established anti-cancer agent like bortezomib," says Grant. "We are currently working with representatives from the pharmaceutical industry and the National Cancer Institute to develop a new treatment strategy in which ibrutinib will be combined with proteasome inhibitors like bortezomib for the treatment of patients with lymphomas and potentially other blood cancers."

Grant and Dasmahapatra collaborated on this study with Hiral Patel and Tri Nguyen, Ph.D., from the Department of Internal Medicine at VCU School of Medicine; Paul Dent, Ph.D., Universal Corporation Distinguished Professor for Cancer Cell Signaling, vice chair of the department of neurosurgery and member of the Developmental Therapeutics research program at VCU Massey; and Richard I. Fisher, M.D., and Jonathan Friedberg, M.D., from the James T. Wilmot Cancer Center at the University of Rochester.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Girija Dasmahapatra, Hiral Patel, Paul Dent, Richard I. Fisher, Jonathan Friedberg, Steven Grant. The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. British Journal of Haematology, 2013; DOI: 10.1111/bjh.12206

Cite This Page:

Virginia Commonwealth University. "Experimental drug combination selectively destroys lymphoma cells." ScienceDaily. ScienceDaily, 6 February 2013. <www.sciencedaily.com/releases/2013/02/130206121324.htm>.
Virginia Commonwealth University. (2013, February 6). Experimental drug combination selectively destroys lymphoma cells. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/02/130206121324.htm
Virginia Commonwealth University. "Experimental drug combination selectively destroys lymphoma cells." ScienceDaily. www.sciencedaily.com/releases/2013/02/130206121324.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins