Featured Research

from universities, journals, and other organizations

Stem cell breakthrough could lead to new bone repair therapies on nanoscale surfaces

Date:
February 11, 2013
Source:
University of Southampton
Summary:
Scientists have created a new method to generate bone cells which could lead to revolutionary bone repair therapies for people with bone fractures or those who need hip replacement surgery due to osteoporosis and osteoarthritis The researchers cultured human embryonic stem cells on to the surface of plastic materials and assessed their ability to change Scientists were able to use the nanotopographical patterns on the biomedical plastic to manipulate human embryonic stem cells towards bone cells. This was done without any chemical enhancement.

Stem cell breakthrough could lead to new bone repair therapies.
Credit: Image courtesy of University of Southampton

Scientists at the University of Southampton have created a new method to generate bone cells which could lead to revolutionary bone repair therapies for people with bone fractures or those who need hip replacement surgery due to osteoporosis and osteoarthritis.

The research, carried out by Dr Emmajayne Kingham at the University of Southampton in collaboration with the University of Glasgow and published in the journal Small, cultured human embryonic stem cells on to the surface of plastic materials and assessed their ability to change.

Scientists were able to use the nanotopographical patterns on the biomedical plastic to manipulate human embryonic stem cells towards bone cells. This was done without any chemical enhancement.

The materials, including the biomedical implantable material polycarbonate plastic, which is a versatile plastic used in things from bullet proof windows to CDs, offer an accessible and cheaper way of culturing human embryonic stem cells and presents new opportunities for future medical research in this area.

Professor Richard Oreffo, who led the University of Southampton team, explains: "To generate bone cells for regenerative medicine and further medical research remains a significant challenge. However we have found that by harnessing surface technologies that allow the generation and ultimately scale up of human embryonic stem cells to skeletal cells, we can aid the tissue engineering process. This is very exciting.

"Our research may offer a whole new approach to skeletal regenerative medicine. The use of nanotopographical patterns could enable new cell culture designs, new device designs, and could herald the development of new bone repair therapies as well as further human stem cell research," Professor Oreffo adds.

This latest discovery expands on the close collaborative work previously undertaken by the University of Southampton and the University of Glasgow. In 2011 the team successfully used plastic with embossed nanopatterns to grow and spread adult stem cells while keeping their stem cell characteristics; a process which is cheaper and easier to manufacture than previous ways of working.

Dr Nikolaj Gadegaard, Institute of Molecular, Cell and Systems Biology at the University of Glasgow, says: "Our previous collaborative research showed exciting new ways to control mesenchymal stem cell -- stem cells from the bone marrow of adults -- growth and differentiation on nanoscale patterns.

"This new Southampton-led discovery shows a totally different stem cell source, embryonic, also respond in a similar manner and this really starts to open this new field of discovery up. With more research impetus, it gives us the hope that we can go on to target a wider variety of degenerative conditions than we originally aspired to. This result is of fundamental significance."

The study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).


Story Source:

The above story is based on materials provided by University of Southampton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Emmajayne Kingham, Kate White, Nikolaj Gadegaard, Matthew J. Dalby, Richard O. C. Oreffo. Nanotopographical Cues Augment Mesenchymal Differentiation of Human Embryonic Stem Cells. Small, 2013; DOI: 10.1002/smll.201202340

Cite This Page:

University of Southampton. "Stem cell breakthrough could lead to new bone repair therapies on nanoscale surfaces." ScienceDaily. ScienceDaily, 11 February 2013. <www.sciencedaily.com/releases/2013/02/130211090846.htm>.
University of Southampton. (2013, February 11). Stem cell breakthrough could lead to new bone repair therapies on nanoscale surfaces. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2013/02/130211090846.htm
University of Southampton. "Stem cell breakthrough could lead to new bone repair therapies on nanoscale surfaces." ScienceDaily. www.sciencedaily.com/releases/2013/02/130211090846.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins