Featured Research

from universities, journals, and other organizations

Potential benefits of inertial fusion energy justify continued research and development

Date:
February 20, 2013
Source:
National Academy of Sciences
Summary:
The potential benefits of successful development of an inertial confinement fusion-based energy technology justify investment in fusion energy research.

The potential benefits of successful development of an inertial confinement fusion-based energy technology justify investment in fusion energy research and development as part of the long-term U.S. energy R&D portfolio, says a new report from the National Research Council. Although ignition of the fusion fuel has not yet been achieved, scientific and technological progress in inertial confinement fusion over the past decade has been substantial. Developing inertial fusion energy would require establishment of a national, coordinated, broad-based program, but achievement of ignition is a prerequisite.

"The realization of inertial fusion energy would be a tremendous achievement capable of satisfying the world's ever-growing need for power without major environmental consequences," said Ronald Davidson, professor of astrophysical sciences at Princeton University's Plasma Physics Laboratory and co-chair of the committee that wrote the report. "These possibilities form an extremely compelling rationale to continue R&D efforts toward this goal."

Inertial fusion energy technology (IFE) would provide an essentially carbon-free energy source with a practically unlimited supply of fuel. IFE relies on a process in which a fuel pellet the size of a pinhead is compressed by an external energy source, raising the temperature and density enough that the nuclei of the some of the fuel atoms fuse together, releasing nuclear energy. The aim is ignition, in which the fusion energy produced by the initial compression causes the remaining fuel to undergo fusion.

"The fuel used in the fusion process is lithium and deuterium; deuterium is derived from water and therefore virtually unlimited," explained Gerald Kulcinski, associate dean for research and director of the Fusion Technical Institute at the University of Wisconsin, Madison, who served as co-chair of the report committee. "And unlike nuclear fission plants, it would not produce large amounts of high-level nuclear waste requiring long-term disposal. The potential is for a sustainable energy source that could power the Earth for millions of years."

U.S. research on inertial confinement fusion has been supported by the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy. NNSA's objective is nuclear weapons stockpile stewardship, but much of the R&D is also applicable to IFE development. There are several external energy source or "driver" technologies under development: lasers, particle beams, and pulsed magnetic fields. NNSA's National Ignition Facility, located at Lawrence Livermore National Laboratory, recently completed a National Ignition Campaign aimed at achieving ignition. While much was learned in the process, ignition was not attained. In view of this result, the committee concluded that a range of driver technologies should continue to be pursued, rather than choosing a single technology at this time.

Report: http://sites.nationalacademies.org/xpedio/groups/depssite/documents/webpage/deps_081572.pdf


Story Source:

The above story is based on materials provided by National Academy of Sciences. Note: Materials may be edited for content and length.


Cite This Page:

National Academy of Sciences. "Potential benefits of inertial fusion energy justify continued research and development." ScienceDaily. ScienceDaily, 20 February 2013. <www.sciencedaily.com/releases/2013/02/130220114036.htm>.
National Academy of Sciences. (2013, February 20). Potential benefits of inertial fusion energy justify continued research and development. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/02/130220114036.htm
National Academy of Sciences. "Potential benefits of inertial fusion energy justify continued research and development." ScienceDaily. www.sciencedaily.com/releases/2013/02/130220114036.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins