Featured Research

from universities, journals, and other organizations

Optical materials: Light's magnetism shows its true colors

Date:
February 27, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Researchers in Singapore have created tiny spheres of silicon that can strongly interact with the magnetic field of visible-wavelength light. These engineered 'magnetic materials' enable new ways of controlling light at the nanoscale.

Light is an oscillating wave of electric and magnetic fields. The way the electric field component interplays with the atoms in a material largely determines how light interacts with matter. With visible light, however, the influence of the magnetic component is usually much smaller. Arseniy Kuznetsov at the A*STAR Data Storage Institute, Singapore, and co‐workers have now created tiny spheres of silicon that can strongly interact with the magnetic field of visible-wavelength light1. These engineered 'magnetic materials' enable new ways of controlling light at the nanoscale.

Related Articles


Relative permeability is a measure of a substance's ability to support a magnetic field. Most optical materials have a permeability approximately equal to one. A more diverse choice, however, would open the door to a whole host of novel optical devices. Negative permeability, for example, could be used to create high-resolution lenses and even invisibility cloaks. As no such materials exist in nature, scientists have started to develop metamaterials, which are artificial structures engineered to interact with light in a desired way. Kuznetsov and co-workers have shown that nanoscale engineering provides a way of tuning the magnetic properties of silicon nanoparticles.

The researchers fired a high-intensity laser at a silicon wafer, which blasted off spheres of silicon with diameters between 100 and 200 nanometers. The separation between the spheres was large enough that the researchers could see them individually under an optical microscope. They could also see that the nanoparticles scattered light of all colors in the rainbow, from red to violet.

In a theoretical analysis, Kuznetsov and co-workers showed that the optical response resulted from incoming light generating a circular electric field, or displacement current, in the sphere. This, in turn, supported an oscillating magnetic field in the middle of the particle -- a so-called magnetic dipole (see image). "We have experimentally demonstrated that silicon nanoparticles can have strong electric and magnetic dipole resonances in the visible spectrum," explains Kuznetsov. "The advantage of our approach is that it is free of energy loss because the modes are not related to real electron currents."

The properties of the dipole were dependent on the size of the particle, so particles of different sizes scattered light of different colors. The team predicts that more sophisticated fabrication techniques will soon enable greater control over a nanoparticle's size and shape, thus enabling selective tuning of its optical properties. "Our future research will target possible applications of these nanoparticles and the realization of novel nanodevices for light-on-a-chip integration," says Kuznetsov.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Arseniy I. Kuznetsov, Andrey E. Miroshnichenko, Yuan Hsing Fu, JingBo Zhang, Boris Luk’yanchuk. Magnetic light. Scientific Reports, 2012; 2 DOI: 10.1038/srep00492

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Optical materials: Light's magnetism shows its true colors." ScienceDaily. ScienceDaily, 27 February 2013. <www.sciencedaily.com/releases/2013/02/130227124657.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, February 27). Optical materials: Light's magnetism shows its true colors. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2013/02/130227124657.htm
The Agency for Science, Technology and Research (A*STAR). "Optical materials: Light's magnetism shows its true colors." ScienceDaily. www.sciencedaily.com/releases/2013/02/130227124657.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins