Featured Research

from universities, journals, and other organizations

New NIST time code to boost reception for radio-controlled clocks

Date:
March 8, 2013
Source:
National Institute of Standards and Technology (NIST)
Summary:
NIST is changing the way it broadcasts time signals that synchronize radio-controlled "atomic" clocks and watches to official US time in ways that will enable new radio-controlled timepieces to be significantly more robust and reliable. This new time broadcast protocol will not only improve the performance of new radio-controlled clocks and watches, but will encourage the development of new timekeeping products that were not practical with the old broadcast system because of local interference or other limitations.

New changes to the NIST WWVB time signal, broadcast at 60 KHz., are visible on this oscilloscope. Changes in the overall height of the wave are amplitude modulations, the method WWVB has always used to encode time information. The flipping of the wave upside down and back again are phase modulations, the new encoding system designed to give the signal greater penetration strength.
Credit: Burrus/NIST

The National Institute of Standards and Technology (NIST) is changing the way it broadcasts time signals that synchronize radio-controlled "atomic" clocks and watches to official U.S. time in ways that will enable new radio-controlled timepieces to be significantly more robust and reliable.

This new time broadcast protocol will not only improve the performance of new radio-controlled clocks and watches, but will encourage the development of new timekeeping products that were not practical with the old broadcast system because of local interference or other limitations. For example, appliances such as refrigerators, microwave ovens and thermostats, as well as traffic light timers and sprinkler systems will be able to take advantage of this new phase modulation broadcast.

Popular radio-controlled timekeepers, which range from wristwatches to wall clocks, are not really atomic clocks -- though that's often in their name -- but they do set themselves by listening to low-frequency AM time broadcasts from the NIST radio station WWVB in Fort Collins, Colo. Those broadcasts are synchronized to the NIST atomic clock ensemble in nearby Boulder, Colo.

However, sometimes the radio-controlled clocks have difficulty accurately picking up the WWVB time signal because of the clock's location, local radio interference, effects of buildings, and other problems. Moreover, a time broadcast from England on the same frequency also interferes with devices on the east coast of the United States that rely on the NIST broadcast, according to John Lowe, station manager for WWVB.

To solve these problems, Lowe says, NIST has developed, tested and is now beginning to implement the new phase-modulation WWVB signal. Like a traditional AM radio station, time information is encoded in the WWVB broadcast by changes in the strength or amplitude of the radio signal. Phase modulation adds an additional layer of information encoded by shifting the phase of the carrier wave. (The crests of two waves that are "in phase" pass a point at the same time. If one is phase-shifted, the crest will arrive a little before or after the other.)

This change significantly improves signal reception and overall performance of new products that are designed to utilize this new protocol. Legacy clocks and watches will still continue to function as they have because the amplitude modulation remains the same, but they will not benefit from the increased performance of the new phase modulation protocol, Lowe said.

These new products and non-networked systems will be able to take advantage of the improved NIST broadcast format thanks to next generation receiver chips that will begin entering the marketplace in 2013.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology (NIST). "New NIST time code to boost reception for radio-controlled clocks." ScienceDaily. ScienceDaily, 8 March 2013. <www.sciencedaily.com/releases/2013/03/130308183824.htm>.
National Institute of Standards and Technology (NIST). (2013, March 8). New NIST time code to boost reception for radio-controlled clocks. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/03/130308183824.htm
National Institute of Standards and Technology (NIST). "New NIST time code to boost reception for radio-controlled clocks." ScienceDaily. www.sciencedaily.com/releases/2013/03/130308183824.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins