Featured Research

from universities, journals, and other organizations

New automated process simplifies alignment and splicing of multicore optical fibers

Date:
March 12, 2013
Source:
The Optical Society
Summary:
New multicore optical fibers have many times the signal-carrying capacity of traditional single-core fibers, but their use in telecommunications has been restricted because of the challenge in splicing them together. Now, a new technique offers an automated method for aligning and splicing multicore fibers, allowing engineers to take manual splicing out of the lab and into an automated production line.

The Fujikura FSM-100P+ fusion splicer is used for the automated alignment and splicing of MCF with PC control software developed by AFL.
Credit: Image courtesy Fujikura Splicer Department

New multicore optical fibers have many times the signal-carrying capacity of traditional single-core fibers, but their use in telecommunications has been severely restricted because of the challenge in splicing them together-- picture trying to match up and connect two separate boxes of spaghetti so that all of the noodles in each box are perfectly aligned. Now, a new splicing technique offers an automated way to do just that, with minimal losses in signal quality across the spliced sections.

The method will be described next week at OFC/NFOEC 2013.

In the telecommunications industry, engineers maximize signal-carrying capacity using a process called multiplexing, which allows multiple signals or data streams to be combined within a single fiber cable. One digital phone line, for example, uses 64 kilobits per second of bandwidth, but with a technique called time multiplexing, more than 1.5 million phone conversations can take place at the same time, carried by one fiber core. With wavelength multiplexing, that one fiber core can send up to 200 different wavelengths of light simultaneously, increasing the capacity to 10 terabits per second, serving about 200 million phone lines. Those multiplexed fibers, in turn, can be bundled together into a so-called multicore fiber (MCF), consisting of up to 19 cores -- and up to 19 times the signal-carrying capacity.

The challenge, however, is splicing those multicores together.

Researchers who work with MCFs in the lab usually have their own preferred manual processes for aligning and splicing fibers, explains Wenxin Zheng, manager of splice engineering at AFL in Duncan, S.C., who developed the new technique. "Although the manual way may be good for a skilled operator in a lab environment for research purposes, automation is the only path that can push MCF to factories and production lines."

In Zheng's process, which uses a Fujikura FSM-100P+ fusion splicer (see image), the fibers to be spliced are stripped and loaded into the splicer, then rotated and imaged with two video cameras so that their cores can be roughly aligned using a pattern-matching algorithm. Next, using a power-feedback method and image processing, a pair of corresponding cores in each fiber are finely aligned, as is the cladding around the cores. Finally, the cores are heat-spliced.

"To align the multiple cores simultaneously is a big challenge," Zheng says. "If two fibers to be spliced have random core locations, there is no way to align the entire core." However, the component cores of MCFs can be aligned if they are created using the same design standard, and if the cores are distributed symmetrically in the MCF -- such as in a seven-core MCF with one central core surrounded by six cores oriented like the spokes of a wagon wheel. In that case, Zheng notes, "we can fine-align one side-core in an MCF and its cladding at the same time. Based on the geometric specifications of the fiber, the rest of the cores will be automatically aligned."

Zheng's presentation, "Automated Alignment and Splicing for Multicore Fibers," will take place at 5 p.m. Monday, March 18 at the Anaheim Convention Center.


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Cite This Page:

The Optical Society. "New automated process simplifies alignment and splicing of multicore optical fibers." ScienceDaily. ScienceDaily, 12 March 2013. <www.sciencedaily.com/releases/2013/03/130312134656.htm>.
The Optical Society. (2013, March 12). New automated process simplifies alignment and splicing of multicore optical fibers. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/03/130312134656.htm
The Optical Society. "New automated process simplifies alignment and splicing of multicore optical fibers." ScienceDaily. www.sciencedaily.com/releases/2013/03/130312134656.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins