Featured Research

from universities, journals, and other organizations

New technique creates stronger, lightweight magnesium alloys

Date:
March 13, 2013
Source:
North Carolina State University
Summary:
Researchers have developed a new technique for creating stronger, lightweight magnesium alloys that have potential structural applications in the automobile and aerospace industries.

Nano-spaced stacking faults are parallel fault-lines in the structure of the alloy that increase the strength of the material.
Credit: Image courtesy of North Carolina State University

Researchers from North Carolina State University have developed a new technique for creating stronger, lightweight magnesium alloys that have potential structural applications in the automobile and aerospace industries.

Engineers constantly seek strong, lightweight materials for use in cars and planes to improve fuel efficiency. Their goal is to develop structural materials with a high "specific strength," which is defined as a material's strength divided by its density. In other words, specific strength measures how much load it can carry per unit of weight.

Researchers at NC State focused on magnesium alloys because magnesium is very light; on its own, though, it isn't very strong. In the study, however, the researchers were able to strengthen the material by introducing "nano-spaced stacking faults." These are essentially a series of parallel fault-lines in the crystalline structure of the alloy that isolate any defects in that structure. This increases the overall strength of the material by approximately 200 percent.

"This material is not as strong as steel, but it is so much lighter that its specific strength is actually much higher," says Dr. Suveen Mathaudhu, a co-author of a paper on the research and an adjunct assistant professor of materials science and engineering at NC State under the U.S. Army Research Office's Staff Research Program. "In theory, you could use twice as much of the magnesium alloy and still be half the weight of steel. This has real potential for replacing steel or other materials in some applications, particularly in the transportation industry -- such as the framework or panels of vehicles."

The researchers were able to introduce the nano-spaced stacking faults to the alloy using conventional "hot rolling" technology that is widely used by industry. "We selected an alloy of magnesium, gadolinium, yttrium, silver and zirconium because we thought we could introduce the faults to that specific alloy using hot rolling," says Dr. Yuntian Zhu, a professor of materials science and engineering at NC State and co-author of the paper. "And we were proven right."

"Because we used existing technology, industry could adopt this technique quickly and without investing in new infrastructure," Mathaudhu says.

The paper, "Ultrastrong Mg-Alloy via Nano-Spaced Stacking Faults," was published online March 12 in Materials Research Letters and was co-authored by NC State Ph.D. students W.W. Jian, W.Z. Xu and H. Yuan; postdoctoral researcher Dr. G.M. Cheng; Dr. Carl Koch, Kobe Steel Distinguished Professor of Materials Science and Engineering at NC State; Dr. M.H. Tsai, a former visiting scientist at NC State; and Dr. Q.D. Wang, of Shanghai Jiaotang University. The work was supported by the U.S. Army Research Office.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. W. Jian, G. M. Cheng, W. Z. Xu, H. Yuan, M. H. Tsai, Q. D. Wang, C. C. Koch, Y. T. Zhu, S. N. Mathaudhu. Ultrastrong Mg Alloy via Nano-spaced Stacking Faults. Materials Research Letters, 2013; 1 DOI: 10.1080/21663831.2013.765927

Cite This Page:

North Carolina State University. "New technique creates stronger, lightweight magnesium alloys." ScienceDaily. ScienceDaily, 13 March 2013. <www.sciencedaily.com/releases/2013/03/130313100427.htm>.
North Carolina State University. (2013, March 13). New technique creates stronger, lightweight magnesium alloys. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2013/03/130313100427.htm
North Carolina State University. "New technique creates stronger, lightweight magnesium alloys." ScienceDaily. www.sciencedaily.com/releases/2013/03/130313100427.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins