Featured Research

from universities, journals, and other organizations

Venus vortices go for chaotic multi-storey strolls around the poles

Date:
March 24, 2013
Source:
Europlanet Media Centre
Summary:
A detailed study of Venus' South Polar Vortex shows a much more chaotic and unpredictable cyclone than previously thought. The analysis reveals that the center of rotation of the vortex wanders around the pole differently at different altitude levels in the clouds of Venus. In its stroll around the Pole, in layers separated by 20 km, the vortex experiences unpredictable changes in its morphology.

The South Polar Vortex of Venus changes its shape day-to-day. The upper panels of the figure show the upper clouds at 63km above the surface and the lower panels present the vortex as observed in the lower clouds at 42km altitude level.
Credit: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA/Universidad del Paํs Vasco (I. Garate-Lopez)

A detailed study of Venus' South Polar Vortex shows a much more chaotic and unpredictable cyclone than previously thought. The analysis reveals that the center of rotation of the vortex wanders around the pole differently at different altitude levels in the clouds of Venus. In its stroll around the Pole, in layers separated by 20 km, the vortex experiences unpredictable changes in its morphology.

Related Articles


The results of this study are published online in Nature Geoscience today.

The study, entitled 'A chaotic long-lived vortex at the southern pole of Venus', used infrared images from VIRTIS instrument onboard the European Space Agency's Venus Express spacecraft. VIRTIS provides spectral images at different levels of the atmosphere and allows the observation of the lower and upper clouds of Venus.

Atmospheric vortices are common in the atmospheres of different planets of the Solar System, although they have different behaviors. Venus is a planet similar to Earth in size, but very different in other aspects. It rotates slowly around its axis, with a day on Venus lasting 243 Earth-days, and it spins in the opposite direction to Earth. Its dense carbon dioxide atmosphere, with surface pressures of 90 times that of Earth, causes a runaway greenhouse effect that raises the surface temperatures up to 450บC. Between 45 and 70km above the surface there is a dense layer of sulfuric acid clouds that completely covers the planet and moves at speeds of 360km/h in a phenomenon named superrotation, where the atmosphere rotates much faster than the surface of the planet. The origin of this effect is still unknown.

At the poles of Venus, the atmospheric circulation forms intense and permanent vortices that change shape and size on a daily basis. In the new analysis published today, researchers report that the winds in the vortex, which were tracked by studying images obtained by the Venus Express orbiter, change chaotically from day-to-day. This unpredictable nature of the Venus polar vortices make them different from polar vortices found on other planets, like Earth or Saturn, which are much more stable and predictable.

The large-scale cyclone extends vertically in Venus' atmosphere over more than 20 kilometers, through a region of highly turbulent, permanent clouds. However, the centers of rotation at two different altitude levels (42 and 62 km above the surface) are not aligned and both wander around the south pole of the planet with no established pattern at velocities of up to 55km/h. The study also finds that even when averaged cross-winds are roughly the same at both altitudes, there is still a strong vertical gradient, with winds increasing by as much as 3km/h for every kilometer of height and leading to possible atmospheric instabilities.

The vortices are fed by the atmospheric superrotation and are trapped in polar regions by a wide, shallow collar of cold air in subpolar latitudes. The eye at the centre of the vortex covers an average area of 2200 kilometres by 1400 kilometres. Despite several years of observations, it is not possible to explain why the vortex is variable enough to alter its shape in just one day, or remain stable for weeks. Thus, along with the origin of the superrotation of the atmosphere, identification of a mysterious source of ultraviolet absorption in the clouds, Venus polar vortices are one of the great mysteries of our twin planet. This study will help for a more precise explanation of the vortex and its relationship with the atmospheric superrotation.


Story Source:

The above story is based on materials provided by Europlanet Media Centre. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Garate-Lopez, R. Hueso, A. Sแnchez-Lavega, J. Peralta, G. Piccioni, P. Drossart. A chaotic long-lived vortex at the southern pole of Venus. Nature Geoscience, 2013; DOI: 10.1038/NGEO1764

Cite This Page:

Europlanet Media Centre. "Venus vortices go for chaotic multi-storey strolls around the poles." ScienceDaily. ScienceDaily, 24 March 2013. <www.sciencedaily.com/releases/2013/03/130324152140.htm>.
Europlanet Media Centre. (2013, March 24). Venus vortices go for chaotic multi-storey strolls around the poles. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2013/03/130324152140.htm
Europlanet Media Centre. "Venus vortices go for chaotic multi-storey strolls around the poles." ScienceDaily. www.sciencedaily.com/releases/2013/03/130324152140.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hubble Marks 25th Birthday as Successor Readies for Launch

Hubble Marks 25th Birthday as Successor Readies for Launch

AFP (Apr. 20, 2015) — With the Hubble Space Telescope celebrating its 25th anniversary on April 24, 2015, AFPTV takes a look at Hubble&apos;s control room and gets a sneak peek inside the space center assembling the James Webb Telescope - Hubble&apos;s successor. Duration: 02:52 Video provided by AFP
Powered by NewsLook.com
Rocket Science: Building And Testing The Space Launch System

Rocket Science: Building And Testing The Space Launch System

Newsy (Apr. 19, 2015) — NASA&apos;s new rocket system will eventually be the most powerful ever built by man, but there are a lot of moving parts to test first. Video provided by Newsy
Powered by NewsLook.com
2015 NASA Rover Challenge Underway in Alabama

2015 NASA Rover Challenge Underway in Alabama

Reuters - Light News Video Online (Apr. 19, 2015) — Teams face an uphill battle for fastest rover in this year&apos;s NASA Human Exploration Rover Challenge in Alabama. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
International Space Station Captures SpaceX Dragon Spacecraft

International Space Station Captures SpaceX Dragon Spacecraft

Reuters - News Video Online (Apr. 17, 2015) — SpaceX&apos;s Dragon spacecraft reaches the International Space Station and is successfully captured by the station&apos;s robotic arm. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins