Featured Research

from universities, journals, and other organizations

Ultra-precision positioning

Date:
March 25, 2013
Source:
American Institute of Physics
Summary:
Ultra-precision positioning is required for the success of many scientific applications, including manufacturing semiconductors, aligning optics and manipulating cells. A novel rotary actuator provides greater torque, accuracy, and speed.

Ultra-precision positioning is required for the success of many scientific applications, including manufacturing semiconductors, aligning optics and manipulating cells. One of the challenges of ultra-precise positioning is providing sufficient torque through small, precise angles. In a paper accepted for publication in the Review of Scientific Instruments, a journal of the American Institute of Physics, researchers describe a new rotary actuator that accurately delivers more torque than previous devices.

Like many other ultra-precise rotary actuators, the new device's action is driven by piezoelectric material, which converts electrical signals into mechanical movement. The researchers improved upon previous designs with a clamp that integrates the driving and stopping action and can be moved to different distances from the rotor's center. That gives the researchers both more power and control of the driving forces. Like rotating a bicycle wheel, it is easier to control the torque and speed of the wheel by varying both the force as well as the distance from the center that force is applied.

The researchers report approximately four-fold improvements in both maximum loading torque and accuracy over other piezoelectric actuators at the maximum driving frequency of the other devices. While the new device can be driven at higher frequencies, the resulting higher speeds mean less accuracy because the rotor is harder to stop due to the additional rotational inertia of the rotor. The researchers are working on a new clamping design to overcome that limitation.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hongwei Zhao, Lu Fu, Luquan Ren, Hu Huang, Zunqiang Fan, Jianping Li, Han Qu. Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius. Review of Scientific Instruments, 2013; 84 (1): 015006 DOI: 10.1063/1.4788736

Cite This Page:

American Institute of Physics. "Ultra-precision positioning." ScienceDaily. ScienceDaily, 25 March 2013. <www.sciencedaily.com/releases/2013/03/130325101531.htm>.
American Institute of Physics. (2013, March 25). Ultra-precision positioning. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/03/130325101531.htm
American Institute of Physics. "Ultra-precision positioning." ScienceDaily. www.sciencedaily.com/releases/2013/03/130325101531.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins