Featured Research

from universities, journals, and other organizations

Researchers uncover a genetic vulnerability of lung cancer to lay the foundation for new drug options

Date:
April 4, 2013
Source:
UT Southwestern Medical Center
Summary:
Physician-researchers at UT Southwestern have identified a vulnerability of certain lung-cancer cells – a specific genetic weakness that can be exploited for new therapies.

Dr. Pier Paolo Scaglioni, assistant professor of internal medicine and a member of the Harold C. Simmons Cancer Center
Credit: Image courtesy of UT Southwestern Medical Center

Physician-researchers at UT Southwestern Medical Center have identified a vulnerability of certain lung-cancer cells -- a specific genetic weakness that can be exploited for new therapies.

Although researchers have long known that mutant versions of the KRAS gene drive tumor formation and are key to cell survival in non-small cell lung cancer, the blocking of activated KRAS has proven difficult. For years, investigations have explored stopping lung cancer at this junction, which also would have an impact on many other cancers. KRAS mutations, for instance, account for as much as 50 percent of all colon cancers.

"There is an urgent need to identify 'downstream' pathways that are required to sustain and grow non-small cell lung cancer (NSCLC)," said Dr. Pier Paolo Scaglioni, assistant professor of internal medicine and a member of the Harold C. Simmons Cancer Center. "As we focus on the right pathways, we stand a much better chance of chemically blocking them and stopping tumor growth."

The team's findings are published in the April edition of Cancer Discovery, a journal of the American Association for Cancer Research. Dr. Scaglioni served as senior author and Dr. Georgia Konstantinidou, a postdoctoral researcher, was first author.

To identify vulnerabilities in KRAS-mutant tumors, Dr. Scaglioni's group used a mouse model of high-grade lung adenocarcinoma induced by a recombinant transgene that allows activation of mutant KRAS in the respiratory epithelium. This strategy allows the generation of high-grade lung cancers that closely resemble human tumors.

Compared with control tumors, the investigators found that the protein RHOA was specifically required for the survival and growth of high-grade tumors via activation of a focal adhesion kinase (FAK). Consistent with a critical role for this pathway in NSCLC, activation of RHOA and FAK was observed in human NSCLC samples and human lung-cancer cells were found to be highly sensitive to pharmacologic inhibitors of FAK.

FAK is a protein that helps cells stick to each other and their surroundings, and also aids in determining how rigid and mobile the cell's structure is. When FAK is blocked in breast cancer, the cancer cells become less metastastic due to decreased mobility.

Dr. Scaglioni and his team are now poised to study in clinical trials the pharmacologic blockade of FAK using inhibitor compounds currently under commercial development.

"Our findings provide the rationale for the rapid implementation of genotype-specific targeted therapies utilizing FAK inhibitors in cancer patients," Dr. Konstantinidou said.

Other researchers at UT Southwestern involved in the paper include Dr. Rolf A. Brekken, associate professor of surgery and pharmacology; Dr. Michael T. Dellinger, postdoctoral researcher II in the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research; and Rachel E. Ramirez, research assistant I in obstetrics/gynecology. Scientists from the University of Texas MD Anderson Cancer Center in Houston and Memorial Sloan-Kettering Cancer Center in New York also contributed to the investigation.

The research was conducted with support from the American Cancer Society, the Ryan Gibson Foundation, and the Department of Defense.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Konstantinidou, G. Ramadori, F. Torti, K. Kangasniemi, R. E. Ramirez, Y. Cai, C. Behrens, M. T. Dellinger, R. A. Brekken, I. I. Wistuba, A. Heguy, J. Teruya-Feldstein, P. P. Scaglioni. RHOA-FAK Is a Required Signaling Axis for the Maintenance of KRAS-Driven Lung Adenocarcinomas. Cancer Discovery, 2013; DOI: 10.1158/2159-8290.CD-12-0388

Cite This Page:

UT Southwestern Medical Center. "Researchers uncover a genetic vulnerability of lung cancer to lay the foundation for new drug options." ScienceDaily. ScienceDaily, 4 April 2013. <www.sciencedaily.com/releases/2013/04/130404072244.htm>.
UT Southwestern Medical Center. (2013, April 4). Researchers uncover a genetic vulnerability of lung cancer to lay the foundation for new drug options. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2013/04/130404072244.htm
UT Southwestern Medical Center. "Researchers uncover a genetic vulnerability of lung cancer to lay the foundation for new drug options." ScienceDaily. www.sciencedaily.com/releases/2013/04/130404072244.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins