Featured Research

from universities, journals, and other organizations

Researchers create novel optical fibers

Date:
April 16, 2013
Source:
University of Wisconsin-Milwaukee
Summary:
Researchers have found a novel way to propagate multiple beams of light in a single strand of optical fiber. The discovery could increase the amount of information fiber optic cables can carry.

Arash Mafi (left), associate professor of electrical engineering, consults with his doctoral student Salman Karbasi. Karbasi designed an optical fiber that traps a beam of light traversing an optical fiber in a unique way. The discovery could usher in the next generation of data transmission methods.
Credit: Peter Jakubowski

Researchers at the University of Wisconsin-Milwaukee (UWM) have found a new mechanism to transmit light through optical fibers. Their discovery marks the first practical application of a Nobel-Prize-winning phenomenon that was proposed in 1958.

Assistant Professor Arash Mafi and doctoral student Salman Karbasi harnessed "Anderson localization" to create an optical fiber with a strong scattering mechanism that traps the beam of light as it traverses the fiber. The work was done in collaboration with Karl Koch, a scientist with Corning Inc.

Data transmission through conventional optical fibers -- in which only one spatial channel of light traverses the fiber -- is the backbone of the Internet. Such single-core fibers, however, are reaching the limits of their information-carrying capacity, says Mafi.

Propagation of multiple optical beams in a single strand of optical fiber is a sought-after solution to overcome this limitation. The collaboration's novel discovery achieves this.

The work has potential in next-generation high-speed communication and biomedical imaging, but it also opens the door for more uses of "Anderson localization" in technology.

"Anderson localization" is named after physicist Philip W. Anderson, who first theoretically observed the curious containment of electrons in a highly disordered medium, an observation for which he shared the 1977 Nobel Prize in physics, but one that is still under investigation.

Mafi and Karbasi's fiber design consists of two randomly distributed materials, which scatter the photons.

The fiber's disordered interior causes a beam of light traveling through it to freeze laterally. The output light can follow any shift in the location of the entry point as it moves around on the cross-section of the fiber.

Karbasi says his theoretical calculations indicated that the proper fiber design would take advantage of Anderson localization. "We designed our fiber so that it provides more physical places where the light can propagate," says Karbasi.

Their research, backed by a grant from the National Science Foundation, was published last summer in the journal Optics Letters.

The collaborators are currently working on forming and transmitting images using their unique method.

Before joining UWM's College of Engineering & Applied Science in 2008, Mafi was a senior research scientist at Corning Inc., the world's largest manufacturer of optical fibers. He earned an NSF Early CAREER award earlier this year.

Karbasi is first author on the publications. He has been studying with Mafi at UWM since 2009, after receiving his bachelor's and master's degrees in Iran.


Story Source:

The above story is based on materials provided by University of Wisconsin-Milwaukee. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Milwaukee. "Researchers create novel optical fibers." ScienceDaily. ScienceDaily, 16 April 2013. <www.sciencedaily.com/releases/2013/04/130416171628.htm>.
University of Wisconsin-Milwaukee. (2013, April 16). Researchers create novel optical fibers. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/04/130416171628.htm
University of Wisconsin-Milwaukee. "Researchers create novel optical fibers." ScienceDaily. www.sciencedaily.com/releases/2013/04/130416171628.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins