Featured Research

from universities, journals, and other organizations

Tracking gunfire with a smartphone

Date:
April 25, 2013
Source:
Vanderbilt University
Summary:
A team of computer engineers has developed an inexpensive hardware module and related software that can transform an Android smartphone into a simple shooter location system.

Vanderbilt computer scientists have developed a smartphone-based system for identifying the location where gunshots are fired.
Credit: Courtesy of ISIS

You are walking down the street with a friend. A shot is fired. The two of you duck behind the nearest cover and you pull out your smartphone. A map of the neighborhood pops up on its screen with a large red arrow pointing in the direction the shot came from.

A team of computer engineers from Vanderbilt University's Institute of Software Integrated Systems has made such a scenario possible by developing an inexpensive hardware module and related software that can transform an Android smartphone into a simple shooter location system. They described the new system's capabilities this month at the 12th Association for Computing Machinery/Institute of Electrical and Electronics Engineers Conference on Information Processing in Sensor Networks in Philadelphia.

For the last decade, the Department of Defense has spent millions of dollars to develop sophisticated sniper location systems that are installed in military vehicles and require dedicated sensor arrays. Most of these take advantage of the fact that all but the lowest powered firearms produce unique sonic signatures when they are fired. First, there is the muzzle blast -- an expanding balloon of sound that spreads out from the muzzle each time the rifle is fired. Second, bullets travel at supersonic velocities so they produce distinctive shockwaves as they travel. As a result, a system that combines an array of sensitive microphones, a precise clock and an off-the-shelf microprocessor can detect these signatures and use them to pinpoint the location from which a shot is fired with remarkable accuracy.

Six years ago, the Vanderbilt researchers, headed by Associate Professor of Electrical and Computer Science Akos Ledeczi developed a system that turns the soldiers' combat helmets into mobile "smart nodes" in a wireless network that can rapidly identify the location of enemy snipers with a surprising degree of accuracy.

In the past few years, the ISIS team has adapted their system so it will work with the increasingly popular smartphone.

Like the military version, the smartphone system needs several nodes in order to pinpoint a shooter's location. As a result, it is best suited for security teams or similar groups. "It would be very valuable for dignitary protection," said Kenneth Pence, a retired SWAT officer and associate professor of the practice of engineering management who participated in the project. "I'd also love to see a version developed for police squad cars." In addition to the smartphone, the system consists of an external sensor module about the size of a deck of cards that contains the microphones and the processing capability required to detect the acoustic signature of gunshots, log their time and send that information to the smartphone by a Bluetooth connection. The smartphones then transmit that information to the other modules, allowing them to obtain the origin of the gunshot by triangulation.

The researchers have developed two versions. One uses a single microphone per module. It uses both the muzzle blast and shockwave to determine the shooter location. It requires six modules to obtain accurate locations. The second version uses a slightly larger module with four microphones and relies solely on the shockwave. It requires only two modules to accurately detect the direction a shot comes from, however, it only provides a rough estimate of the range.

The research was supported by Defense Advance Research Project Agency grant D11PC20026.


Story Source:

The above story is based on materials provided by Vanderbilt University. The original article was written by David Salisbury. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Tracking gunfire with a smartphone." ScienceDaily. ScienceDaily, 25 April 2013. <www.sciencedaily.com/releases/2013/04/130425213800.htm>.
Vanderbilt University. (2013, April 25). Tracking gunfire with a smartphone. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/04/130425213800.htm
Vanderbilt University. "Tracking gunfire with a smartphone." ScienceDaily. www.sciencedaily.com/releases/2013/04/130425213800.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins